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Abstract. Recent work by Babaioff et al. [1], Yao [30], and Cai et al. [7]
shows how to construct an approximately optimal auction for additive
bidders, given access to the priors from which the bidders’ values are
drawn. In this paper, building on the single sample approach of Dhang-
watnotai et al. [15], we show how the auctioneer can obtain approx-
imately optimal expected revenue in this setting without knowing the
priors, as long as the item distributions are regular.
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1 Introduction

In a multiple additive bidders setting, there are n agents and a seller selling a
set of m distinct items. Each agent i has a private value vij for item j, and
value vi(S) =

∑
j∈S vij for the set of items S. The seller runs an auction to

determine who (if anyone) to sell each item to and at what price. The auction
(or mechanism) takes as input the collection of bids, and determines a feasible
allocation and a price to charge each agent. The seller knows ahead of time the
distribution from which each vij is drawn.1 A key question is how to design a
truthful and optimal2 (or approximately optimal) auction.

This is a notoriously difficult problem, but in the past decade, several break-
through results have been obtained. There are three main lines of work related
to optimal auctions for additive bidders. For the case of finite type spaces, [3–6,
29] are able to use linear and convex programming techniques to formulate and
solve the optimal auction problem. This gives a black-box reduction from mech-
anism design to algorithm design that yields a polynomial time algorithm for
revenue maximization in additive settings. A second strand of work [20, 22, 1, 30,
7] handles arbitrary distributions and develops approximately optimal auctions.

? This research was done in part while the authors were visiting the Simons Institute
for Theoretical Computer Science. The authors are funded by the National Science
Foundation under CCF grant 1420381.

1 Thus, from the seller’s perspective this value is a random variable Vij .
2 i.e., revenue-maximizing, in expectation.
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Finally, [11, 12, 10, 18, 19, 16] use duality frameworks to optimally solve the prob-
lem for certain settings with a small number of items, and to provide necessary
and sufficient conditions under which grand bundle selling is optimal.

In this paper, we consider the question of prior-independent optimal mech-
anism design in the multiple additive bidders setting. By prior-independent we
mean two things: first, that there exist prior distributions from which the agents’
values are drawn (as in all the work discussed above), and, second, that the mech-
anism designer has no knowledge of these priors. Thus, without any knowledge
of the priors, we seek to construct a mechanism that guarantees a constant frac-
tion of the expected profit achieved by the optimal mechanism tailored to the
particular prior distributions. This guarantee should hold no matter what the
distributions happen to be, as long as they satisfy the fairly standard condition
of regularity. A growing body of work obtains prior-independent mechanisms in
a number of settings [15, 13, 26, 25, 17].

The main result of this paper is an auction that achieves this goal for the
additive bidder setting when the Vij ’s are all independent and drawn from regular
distributions. We give a mechanism that requires only a single sample from
the distribution of each Vij , and when there are at least two bidders from any
prior distribution, we can implement a sample mechanism as a prior-independent
mechanism. Thus, we add to the short list of prior-independent results in multi-
parameter settings [13, 26].

Our work builds on the breakthrough results of Babaioff, Imorlica, Lucier,
and Weinberg [1] and Yao [30], on the one hand, and Dhangwatnotai, Rough-
garden, and Yan [15] on prior-independent mechanism design on the other hand.
A crucial lemma in [15]3 is that, for a single-item single-bidder problem, access
to a single sample from a regular distribution is sufficient to approximate the
optimal revenue, which in this case is the revenue that results from pricing at
the reserve price for the distribution.

Amazingly, the approximately optimal auctions of Babaioff et al., Yao, and
Cai et al. essentially only use second-price auctions and reserve pricing for ei-
ther single items or bundles of items, and therefore, the single sample paradigm
nearly suffices to construct a prior-independent version of these auctions. There
is only one detail to resolve and that relates to the issue of pricing bundles:
the sum of regular random variables is not necessarily regular. However, delving
into the proof from Babaioff et al., we find that the solution to this problem
essentially writes itself: in the “bad” case, when bundle pricing is necessary for
approximating the optimal revenue, it happens to be that the relevant random
variable concentrates so that, in fact, a sample bundle price is sufficient.

1.1 Other Related Work

An important line of recent research [9, 21, 24, 14, 23] has explored the sample
complexity of auctions. For example, [15] shows that with a single sample, one
can design an auction that gets a constant factor approximation to the optimal

3 This is a reinterpretation of the Bulow-Klemperer Theorem [2].
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single item auction. How much better can you do with more samples? This
question has been explored in a number of auction settings; e.g. by Morgenstern
and Roughgarden [23] in the additive bidder setting we study in this paper.

1.2 Organization

After preliminaries, we show in Section 2 how to approximate the optimal single
additive bidder revenue when given access to a sample from each item distri-
bution. Then, in Section 3, we use the latter result to give two approximately
optimal auctions for the multiple additive bidders setting: one that is given ac-
cess to a sample from every item distribution from each bidder and one is that is
fully prior-independent. In Section 4 we discuss an improved analysis for bidders
with finite support distributions. We conclude with open problems in Section 5.

1.3 Preliminaries

In this paper, we consider the setting of a revenue-maximizing monopolist seller
with m items to sell to n additive bidders. Each bidder i has his value Vij for
item j drawn from an unknown prior distribution Fij . All bidders are additive:
for any set of items S, bidder i’s value for the set is

Vi(S) =
∑
j∈S

Vij .

We will assume that each of the distributions Fij is regular. That is, ϕij(v) =

v − 1−Fij(v)
fij(v)

is non-decreasing.

We also use the following notation:

– The revenue curve R(·) gives the expected revenue for selling an item at
a price x to a bidder with value V drawn from distribution F . That is,
R(x) := x · Pr[V ≥ x].

– The monopoly price r∗ is the price that maximizes revenue: r∗ := argmaxx R(x).
– Consider a single additive bidder with value Vj ∼ Gj for item j. Then

SRev(V1, . . . , Vm) denotes the optimal expected revenue that can be ob-
tained by posting a price for each item j individually. That is,

SRev(V1, . . . , Vm) :=
∑
j

max
xj

Rj(xj),

where Rj is the revenue curve associated with the distribution Gj .
– BRev(V1, . . . , Vm) denotes the optimal expected revenue for posting a price

on the “grand bundle” of all of the items to this same additive bidder with
Vj ∼ Gj . That is,

BRev(V1, . . . , Vm) := max
x

x · Pr[
∑
j

Vj ≥ x].

– For any number x, let (x)+ denote max{x, 0}.
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2 A prior independent mechanism for a single additive
bidder, given samples

Our mechanism draws heavily on two prior results. The first demonstrates that
access to a single sample from a bidder’s distribution can be used to obtain a
1
2 -approximation of optimal revenue in the single-item setting.

Theorem 1 (Dhangwatnotai, Roughgarden, and Yan 2010). Consider a
bidder whose value for a particular item is drawn from F , a regular distribution
with monopoly price r∗ and revenue function R(·). Let S ∼ F be a random
sample from the distribution F . Then, for every nonnegative number t,

E(R(max{t, S})) ≥ 1

2
R(max{t, r∗}).

Therefore, in particular, for t = 0, the expected revenue from posting a price of
S yields at least half of the optimal posted price revenue, which is R(r∗).

The second result we use demonstrates that a combination of two very simple
mechanisms can be used to obtain a constant factor of the optimal revenue in
the single additive bidder setting.

Theorem 2 (Babaioff, Immorlica, Lucier, and Weinberg 2014). Con-
sider a single additive bidder with value Vj for item j drawn independently from
distribution Gj. Denote by opt(V1, . . . , Vm) the revenue of the optimal mech-
anism. Let t = SRev(V1, . . . , Vm) denote the optimal expected revenue from
selling the items separately, and define V :=

∑m
j=1 Vj, the bidder’s value for the

grand bundle. Then

– If E[V | Vj ≤ t ∀j] ≤ 4SRev(V1, . . . , Vm), then

E[opt(V1, . . . , Vm)] ≤ 6SRev(V1, . . . , Vm).

– Otherwise, if E[V | Vj ≤ t ∀j] > 4SRev(V1, . . . , Vm), then

Pr

[
V ≥ 2

5
· E[V | Vj ≤ t ∀j]

]
≥ 47

72

and

E[opt(V1, . . . , Vm)] ≤ 2SRev(V1, . . . , Vm) + E[V | Vj ≤ t ∀j].

From this, Babaioff et al. obtain the following corollary:

Corollary 1 (Babaioff, Immorlica, Lucier, and Weinberg 2014 ). Con-
sider a single additive bidder with value Vj for item j drawn independently from
distribution Gj. Let SRev(V1, . . . , Vm) denote the optimal expected revenue from
selling the items separately and let BRev(V1, . . . , Vm) denote the optimal ex-
pected revenue from selling the grand bundle. Then

E[opt(V1, . . . , Vm)] ≤ 6 ·max{SRev(V1, . . . , Vm) + BRev(V1, . . . , Vm)}.
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We now combine the single additive bidder analysis with samples from the
distributions to give an approximately optimal mechanism for a single additive
bidder that does not rely on knowledge of the priors, but rather uses a single
sample from each distribution.

The multi-bidder analogue of the better of selling separately or selling the
grand bundle is a two-part tariff mechanism as used in [30, 7, 8]. Here, each bidder
is offered a list of item prices and an entry fee. Typically in these mechanisms,
some item prices are determined first. Then, the buyer’s surplus values above
each item’s price are analyzed to understand either (a) whether to increase the
item prices or to use an entry-fee or (b) how to compute the entry fee. This is
equivalent to the buyer’s prior distribution for each item shifted down by the
item’s price. We define the mechanism in a slightly more general way than is
necessary here with a parameter ∆ in order to easily extend to the case where
we want to analyze the shifted distributions. In the single bidder setting, we do
not shift the distributions, so we will set the shift ∆j = 0 for all j. However, this
parameter will allow us to use this mechanism as a black box in the multiple
bidders setting.

Definition 1. Define the Sample Mechanism as follows. Given a set (S1, . . . , Sm)
of samples from an additive bidder’s distribution, and a set of nonnegative values
∆1, . . . ,∆m,

(a) with probability 1
2 : Offer a price of max{∆j , Sj} for each item j separately.

(b) with probability 1
2 : Offer the bidder a price of S+ =

∑m
j=1(Sj−∆j)

+ to enter
the auction. If he pays the entrance fee, he can take any item j he wants at
price ∆j. (When ∆ = 0, this is simply pricing the grand bundle.)

Denote the revenue from this mechanism as Samp(V1, . . . , Vm;∆).

Theorem 3. Consider a single additive bidder with value Vj for item j drawn
independently from regular distribution Gj. Let ∆1, . . . ,∆j ≥ 0, and define V +

j =

(Vj − ∆j)
+. The Sample Mechanism has expected revenue which is a constant

fraction of the optimal expected revenue for (V +
1 , . . . , V

+
m ).

Proof. The first step of the Sample Mechanism obtains expected revenue which
is a constant fraction of SRev(V +

1 , . . . , V
+
m ). To see this, note that

SRev(V +
1 , . . . , V

+
m ) =

∑
j

max
x≥∆j

[
(x−∆j)

+(1−Gj(x))
]

≤
∑
j

max
x≥∆j

Rj(x) ≤
∑
j

Rj(max{∆j , r
∗
j }),

where Rj(·) is the revenue curve for Gj and r∗j is the optimal reserve price for Gj .
The last inequality follows from regularity of Gj , and thus concavity of Rj(·). An
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application of Lemma 1 shows that offering the bidder a price of max{∆j , Sj}
for item j yields expected revenue at least half of Rj(max{∆j , r

∗
j }), hence step

(a) is a 1
4 -approximation to SRev(V +

1 , . . . , V
+
m ).

To complete the proof, we show how the Sample Mechanism approximates
E[opt(V +

1 , . . . , V
+
m )] within a constant factor using the two cases of Theorem 2.

To this end, let t = SRev(V +
1 , . . . , V

+
m ) and define C := E[V +| V +

j ≤ t ∀j],
where V + =

∑
j V

+
j . If C ≤ 4t, we are in the first case of Theorem 2 applied to

the random variables (V +
1 , . . . , V

+
m ), hence

E[opt(V +
1 , . . . , V

+
m )] ≤ 6SRev(V +

1 , . . . , V
+
m ) ≤ 24Samp(V1, . . . , Vm;∆).

Otherwise, C > 4t, and we also need to consider the revenue from the second
step of the Sample Mechanism. In this case, from Theorem 2, we have

E[opt(V +
1 , . . . , V

+
m )] ≤ 2SRev(V +

1 , . . . , V
+
m )+C and Pr

[
V + ≥ 2

5
C

]
≥ 47

72
.

Next, recall that S+ =
∑m
j=1(Sj −∆j)

+ is entry fee that is offered. Observe

that if V + > S+, then the bidder will enter the auction, since his utility will
then be

∑
j|Vj≥∆j

(Vj −∆j)− S+ = V + − S+. Therefore, the expected revenue

from step (b), the entry fee portion of the auction, can be bounded as follows:

E
[
S+

∣∣ V + ≥ S+
]

Pr[V + ≥ S+]

≥ E
[
S+

∣∣∣∣ V + ≥ S+, V +, S+ ≥ 2

5
C

]
· Pr

[
V +, S+ ≥ 2

5
C, V + ≥ S+

]
≥ 2

5
C · Pr

[
V + ≥ S+

∣∣∣∣ V +, S+ ≥ 2

5
C

]
·
(

47

72

)2

>
1

2
· 1

6
C

=
1

12
C. (1)

The third line follows from the second part of Theorem 2, and the indepen-
dence of V + and S+. The fourth line follows from the fact that V + and S+ are
identically distributed.

In this case, it is now clear that the Sample Mechanism obtains a constant
factor approximation:

E[opt(V +
1 , . . . , V

+
m )] ≤ 2SRev(V +

1 , . . . , V
+
m ) + C ≤ 24Samp(V1, . . . , Vm;∆).

Thus in either case, E[opt(V +
1 , . . . , V

+
m )] ≤ 24Samp(V1, . . . , Vm;∆). This mech-

anism loses a factor of 4 compared to the prior-dependent max{SRev,BRev}
mechanism in [1].

Corollary 2. Consider a single additive bidder with value Vj for item j drawn
independently from regular distribution Gj. The Sample Mechanism with ∆j = 0
for all j has expected revenue which is a constant fraction of the optimal expected
revenue E[opt(V1, . . . , Vm)].
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3 Multiple additive bidders

Our mechanism builds on the following breakthrough result from which Yao
constructs a simple, approximately optimal mechanism for the multiple additive
bidders setting.

Theorem 4 (Yao 2015). Consider n additive bidders, where Vij is the value
bidder i has for item j, where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Assume the set
of random variables {Vij}mj=1 are independent for each i. Define the following
auxiliary random variables:

Xij := max
k 6=i

Vkj and Aij := (Vij −Xij)
+.

Then for V j = (V1j , . . . , Vnj), the expected revenue of the optimal mechanism
for the multiple additive bidders setting satisfies

E[opt(V 1, . . . ,V m)] ≤ 8
∑
i

E[opt(Ai1, . . . , Aim)] + 9E[SPA(V 1, . . . ,V m)],

where SPA(·) is the revenue from running a separate second-price auction for
each item and opt(Ai1, . . . , Aim) denotes the revenue obtained by the optimal
single additive bidder auction, when that bidder’s value for item j is Aij.

3.1 A Sample Auction for Multiple Bidders

By randomly choosing to either (a) run a second-price auction separately on
each item or (b) run sample mechanisms on each bidder with ∆ij = Xij , we
can achieve a constant-fraction of the optimal revenue from only samples in the
multiple-additive-bidder setting as well.

Definition 2. Define the Multiple-Additive-Bidders Sample Mechanism param-
eterized by p as follows, given a sample Sij from each bidder i’s distribution for
item j:

(a) with probability p: Run a Second-Price Auction on each item j. That is, offer
each bidder i the option to take item j at a price equal to Xij.

(b) with probability 1− p: Offer each bidder i an entry fee of
∑
j(Sij −Xij)

+.

Any bidder willing to pay the entry fee can then take4 item j at price Xij.

Let MAB-Samp(V 1, . . . ,V m; p) denote the revenue from the Multiple-Additive-
Bidders Sample Mechanism with parameter p.

Theorem 5. In the setting of Theorem 4, when the random variables Vij are
all independent and, for each j, the random variables Vij is drawn from regular
distribution Fij for each bidder i and item j, with access to a sample Sij from
each Fij, the Multiple-Additive-Bidders Sample Mechanism with parameter p =
105
201 obtains at least a constant fraction of the optimal expected revenue.

4 This guarantees that each item is taken by at most one bidder.
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Proof. Recall that Xij := maxk 6=i Vkj is the highest bid for item j excluding
bidder i’s bid, and Aij := (Vij − Xij)

+ is the surplus from buyer i’s value for
item j over this price.

Given sample Sij for each item j, an application of Theorem 3 on each bidder
i where ∆ij = Xij gives that opt(Ai1, . . . , Aim) ≤ 24Samp(Vi1, . . . , Vim;Xi),
where Xi = (Xi1, . . . , Xim). Using Theorem 4, this gives that

E[opt(V 1, . . . ,V m)] ≤ 8
∑
i

E[opt(Ai1, . . . , Aim)] + 9E[SPA(V 1, . . . ,V m)]

≤ 8 · 24
∑
i

EXi
[Samp(Vi1, . . . , Vim;Xi)]

+ 9E[SPA(V 1, . . . ,V m)]

≤ 201MAB-Samp(V 1, . . . ,V m;
105

201
)

Running the sample mechanisms with probability 192
201 and a second-price

auction separately on each item with probability 9
201 gives a 201-approximation,

which is equivalent to running a second-price auction with probability 105
201 and

the entry fee mechanism with the remaining probability.. Similarly to the single
bidder case, this loses less than a factor of 4 compared to the Bundling Mech-
anism in [30] which requires full knowledge of all of the prior distributions and
achieves a 57-approximation.

3.2 A Prior-Independent Auction

We can also use sample mechanisms to sell to multiple additive bidders without
extra samples. Analogously to [15], if the seller can identify which bidders come
from the same distribution, she can take a sample bidder from each group a of
identically distributed bidders and use it to set the prices for the rest of the
group. This requires at least two bidders from each distribution group a. The
mechanism is the same as the Multiple-Additive-Bidders Sample Mechanism,
but with randomly excluded bidders used as samples.

Definition 3. Define the Multiple-Additive-Bidders Prior-Independent Mech-
anism parameterized by p as follows:

(a) with probability p: Run a Second-Price Auction on each item j. That is, offer
each bidder i the option to take item j at a price equal to Xij.

(b) with probability 1−p: Remove a random bidder ia from each group of bidders
a and let Saj be his bid for item j (i.e., Saj := Viaj). Let S be the set of
bidders sampled from each group a. Also, let βij = maxk 6∈S, k 6=i Vkj. Offer
each remaining bidder i from group a an entry fee of

∑
j(Saj − βij)+.

Any bidder willing to pay the entry fee can then take item j at price βij.

Let MAB-PI(V 1, . . . ,V m; p) denote the revenue from the Multiple-Additive-
Bidders Prior-Independent Mechanism with parameter p.
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Theorem 6. In the setting of Theorem 4, when the random variables Vij are
all independent and, for each j, the random variables Vij is drawn from regular
distribution Fij for each bidder i and item j, with at least 2 bidders from every
distribution group a, the Multiple-Additive-Bidders Prior-Independent Mecha-
nism with parameter p = 585

1161 obtains at least a constant fraction of the optimal
expected revenue.

Proof. If na is the number of bidders from distribution group a and nmin
a is the

number of bidders in the smallest such group, then∑
i

E[opt(Ai1, . . . , Aim)] ≤
∑
a

na
na − 1

∑
i∈a,i 6∈S

E[opt(Ai1, . . . , Aim)]

≤ nmin
a

nmin
a − 1

∑
i 6∈S

E[opt(Ai1, . . . , Aim)].

Also notice that

Aij :=
(
Vij −max{max

a
{Saj}, βij}

)+
and define V +

ij := (Vij − βij)+.

Clearly, the random variable V +
ij dominates the random variable Aij (i.e.,

Pr(V +
ij ≥ x) ≥ Pr(Aij ≥ x) for all x). Therefore,

SRev(Ai1, . . . , Aim) ≤ SRev(V +
i1 , . . . , V

+
im)

and
BRev(Ai1, . . . , Aim) ≤ BRev(V +

i1 , . . . , V
+
im)

Thus, by Corollary 1, it suffices to obtain a constant fraction of E[opt(V +
i1 , . . . , V

+
im)]

for each i.
Using the analysis from Theorem 5, we put it all together to see that

E[opt(V 1, . . . ,V m)] ≤ 8 · nmin
a

nmin
a − 1

∑
i6∈S

E[opt(Ai1, . . . , Aim)]

+ 9E[SPA(V 1, . . . ,V m)]

≤ 8 · nmin
a

nmin
a − 1

· 6
∑
i 6∈S

E[opt(V +
i1 , . . . , V

+
im)]

+ 9E[SPA(V 1, . . . ,V m)]

≤ 8 · nmin
a

nmin
a − 1

· 6 · 24
∑
i 6∈S

Eβi [Samp(Vi1, . . . , Vim;βi)]

+ 9E[SPA(V 1, . . . ,V m)]

≤ 1161 · nmin
a

nmin
a − 1

MAB-PI(V 1, . . . ,V m;
585

1161
)
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where of course, since nmin
a ≥ 2, then

nmin
a

nmin
a −1 ≤ 2.

Note that the loss due to excluding bidders to use as samples is a factor of

6
nmin
a

nmin
a −1 .

4 Finite Support Distributions

Cai, Devanur, and Weinberg [7] present a new framework that analyzes revenue
from multiple additive bidders with finite support distributions (over discrete
value spaces) via a similar core-tail decomposition. These results also hold for
discretizing a continuous value space and losing at most a factor of 1 + ε in the
revenue due to the discretization. Utilizing this analysis improves the constant
of our approximation.

Precisely, they show that

E[opt(V 1, . . . ,V m)] ≤ 4SRev(V 1, . . . ,V m) + Core

where, for the highest other bid Xij := maxk 6=i Vkj ,

Core = E[

n∑
i=1

m∑
j=1

(Vij −Xij)
+
1Vij∈[Xij ,Xij+ti]]

and
ti = SRev((Vi1 −Xi1)+, . . . , (Vim −Xim)+).

Then if Aij = (Vij −Xij)
+ · 1Vij∈[Xij ,Xij+ti]], we have that

Core =

n∑
i=1

EV −i
[EVi

[

m∑
j=1

Aij ]].

Then in a proof nearly identical to that of Theorem 3, we can show that Core ≤
24
∑
i EV −i

[Samp(Vi1, . . . , Vim;Xi)]. For each bidder, we set ∆j = Xij and
bound E[

∑m
j=1Aij ] ≤ 24Samp(Vi1, . . . , Vim;∆).

In one case, E[
∑m
j=1Aij ] ≤ 4t = 4SRev((Vi1 −Xi1)+, . . . , (Vim −Xim)+) ≤

16Samp(Vi1, . . . , Vim;Xi). In the other case, E[
∑m
j=1Aij ] > 4t. In this case,

similarly to the proof of Theorem 2, we get that

Pr[|
∑
j

Aij − E[

m∑
j=1

Aij ]| ≥
3

5
E[

m∑
j=1

Aij ]]

≤
var(

∑m
j=1Aij)

3
5

2E[
∑m
j=1Aij ]

2
by Chebyshev’s inequality

<
var(

∑m
j=1Aij)

9
25

2 · 16t2
since E[

∑
j

Aij ] > 4t

≤ 2t2

9
25

2 · 16t2
=

25

72
.
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The final inequality follows from the fact that var(
∑m
j=1Aij) ≤ t2 by Lemma 9

of [7].
Identically to the proof of Theorem 3, we get that if we offer the bidder a

price of S+ =
∑m
j=1(Sij −Xij)

+ that

E[

m∑
j=1

Aij ] ≤ 12E[S+ · Pr[

m∑
j=1

Aij ≥ S+]] ≤ 24Samp(Vi1, . . . , Vim;Xi).

Hence Core ≤ 24
∑
i EV −i

[Samp(Vi1, . . . , Vim;Xi)]. Moreover, since (Vij −
βij)

+ stochastically dominates (Vij−Xij)
+, then we only lose a factor of

nmin
a

nmin
a −1

for excluding bidders to use as samples to make a prior-independent auction.
As in the proof of Theorem 3, an application of Theorem 1 gives that a

second-price auction on each item is a constant factor of the revenue from selling
each item separately. Then again, since βij = maxk 6∈S, k 6=i Vkj ,

E[opt(V 1, . . . ,V m)] ≤ 4SRev(V 1, . . . ,V m) + Core

≤ 8SPA(V 1, . . . ,V m)+

24 · nmin
a

nmin
a − 1

∑
i6∈S

Eβi
[Samp(Vi1, . . . , Vim;βi)]

≤ 32 · nmin
a

nmin
a − 1

MAB-PI(V 1, . . . ,V m;
5

8
)

We lose a factor of 4 compared to the mechanism of [7] when given samples, and

a factor of 4 · nmin
a

nmin
a −1 without samples.

5 Open Problems

Beyond Additive Bidders One interesting problem for future work is to de-
sign prior-independent mechanisms for more general valuations. Recent work in
revenue maximization for more general multi-item settings gives mechanisms
that have constant-factor approximation guarantees for a single subadditive
buyer [28] and for multiple matroid-constrained buyers [8]. Both of these results
rely on an analysis that chooses prices in the bidders’ distributions that would
sell with a constrained ex-ante probability. As these probabilities are aimed at
segmenting off the tails of the distributions and samples are unlikely to come
from the tail, it is unclear how to design a prior independent mechanism for
these settings.

Lower Bounds Another interesting open problem is to obtain a lower bound
on the gap in revenue between the optimal mechanism and the Sample Mecha-
nism, and for the Multiple-Additive-Bidders Sample Mechanism as well. How-
ever, stronger lower bounds are still open problems for the mechanisms from [1,
30, 7] as well.
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A lower bound from [15] shows that the factor of 2 in Theorem 1 is tight when
a bidder’s distribution for a single item is the distribution where the revenue
curve is a triangle, that is, where F (v) = v

v+1 on [0, H) as H →∞.

The best known lower bound on the approximation of the max{SRev,BRev}
is a factor of 2. The example, given by Rubinstein [27], has n items from the
equal revenue distribution and n rare but expensive items. The optimal revenue
gets an equal fraction of revenue from each group; however, selling the grand
bundle does well for the first set and poorly for the second while selling sepa-
rately captures the revenue of the second set but not the first. Of course, this
gap gives the Sample Mechanism a lower bound of 2 as well.
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