
DS 320 Algorithms for Data Science Lecture #19
Spring 2024 Prof. Kira Goldner

Linear Programming II: Algorithms and Problems

What Does Linear Programming Buy Us?

a. We know efficient algorithms exist (and have a nice theory behind them).

b. We can relate problems to one another through relaxations, duality.

c. It gives us techniques for approximation.

Linear Programming Algorithms

The standard algorithm for solving LPs is the Simplex Algorithm, developed in the 1940s. Its worst-
case running time is not polynomial: you can come up with bad examples for it. But in practice,
the algorithm runs pretty fast. Only much later in 1980 was it shown that linear programs could
always be solved in polynomial time by the Ellipsoid Algorithm (but it tends to be slow in practice).
Later on, a faster polynomial-time algorithm called Karmarkar’s Algorithm was developed, which is
competitive with Simplex. In practice, what you should actually do is use a commercial LP package,
for instance LINDO, CPLEX, Gurobi, and Solver (in Excel). We’ll just give some intuition and the
high-level idea of how they work by viewing linear programming as a geometrical problem. Then
we’ll talk about an elegant algorithm for low-dimensional problems.

Geometry: Think of an n-dimensional space with one coordinate per variable. A solution is a
point in this space. An inequality, like x1 + x2 ≤ 6 is saying that we need the solution to be on
a specified side of a certain hyperplane. The feasible region is the convex region in space defined
by these constraints. Then we want to find the feasible point that is farthest in the “objective”
direction.

max x1 + x2

s.t. x1 ≥ 0

x2 ≥ 0

2x1 + x2 ≤ 1

x1 + 2x2 ≤ 1.



The Simplex Algorithm: The idea is to start at some “corner” of the feasible region. Then we
repeatedly do the following step: look at all neighboring corners of our current position and go to
the best one (the one for which the objective function is greatest) if it is better than our current
position. Stop when we get to a corner where no neighbor has a higher objective value than we
currently have. The key facts here are that

1. since the objective is linear, the optimal solution will be at a corner (or maybe multiple
corners), and

2. there are no local maxima: if you’re not optimal, then some neighbor of you must have a
strictly larger objective value than you have. That’s because the feasible region is convex.

So, the Simplex method is guaranteed to halt at the best solution. The problem is that it is
possible for there to be an exponential number of corners, and it is possible for Simplex to take an
exponential number of steps to find the optimal corner. But, in practice this usually works well.

The Ellipsoid Algorithm: The Ellipsoid Algorithm was invented by Khachiyan in 1980 in Russia.
This algorithm solves just the “feasibility problem,” but you can then do binary search with the
objective function to solve the optimization problem. The idea is to start with a big ellipse (called
an ellipsoid in higher dimensions) that we can be sure contains the feasible region. Then, try the
center of the ellipse to see if it violates any constraints. If not, you’re done. If it does, then look
at some constraint violated. So we know the solution (if any) is contained in the remaining at-
most-half-ellipse. Now, find a new smaller ellipse that contains that half of our initial ellipse. We
then repeat with the new smaller ellipse. One can show that in each step, you can always create a
new smaller ellipse whose volume is smaller, by at least a (1−1/n)-factor, than the original ellipse.
So, every n steps, the volume has dropped by about a factor of 1/e. One can then show that if
you ever get too small a volume, as a function of the number of bits used in the coefficients of the
constraints, then that means there is no solution after all.

One nice thing about the Ellipsoid Algorithm is you just need to tell if the current solution
violates any constraints or not, and if so, to produce one. You don’t need to explicitly write them
all down. There are some problems that you can write as a linear program with an exponential
number of constraints if you had to write them down explicitly, but where there is an fast algorithm
to determine if a proposed solution violates any constraints and if so to produce one. For these
kinds of problems, the Ellipsoid Algorithm is a good one.

Writing Problems We Know as Linear Programs

Independent Set

Recall from last lecture that we formulated the Independent set problem as a linear programming
relaxation.

Given a graph G = (V,E), each vertex i has weight wi, find a maximum weighted independent
set. S is an independent set if it does not contain both i and j for (i, j) ∈ E.



max
∑
i∈V

wixi

s.t. xi + xj ≤ 1 (i, j) ∈ E

0 ≤ xi ≤ 1 i ∈ V.

The Vertex Cover Problem

Given a graph G = (V,E), we say that a set of nodes S ⊆ V is a vertex cover if every edge
e = (i, j) ∈ E has at least one endpoint i or j in S. Our goal is to find a minimum vertex cover.

For the decision version of the problem, we ask: Given a graph G and a number k, does G contain
a vertex cover of size at most k?

In this graph, the minimum vertex cover is the set of nodes {2, 3, 7} for a size of 3.

This is the same graph from last time when we discussed Independent Set. Do we notice any
relationship?

Claim 1. For any graph G = (V,E), S is an independent set if and only if V rS is a vertex cover.

Corollary 1. Finding a maximum independent set is equivalent to finding a minimum vertex cover.
Then Independent Set ≤P Vertex Cover and Vertex Cover ≤P Independent Set.

Corollary 2. Vertex Cover is NP-complete.

Vertex Cover as an Integer Program

a. Decision variables: What are we try to solve for? A set of vertices S that is our vertex cover.
So our variables are xi for each item i, where we want xi = 1 if i is in our vertex cover.

b. Constraints: We can never put more than 1 of a vertex into our cover, so

xi ≤ 1 ∀i



and similarly, we can never take a negative quantity of an vertex, so

xi ≥ 0 ∀i

Finally, we need to take at least one endpoint per edge:

xi + xj ≥ 1 (i, j) ∈ E

c. Objective function: We want to minimize the size/weight of our vertex cover:

max
∑
i

vixi

Note that this is again a linear function.

min
∑
i∈V

wixi

s.t. xi + xj ≥ 1 (i, j) ∈ E

xi ∈ {0, 1} i ∈ V.

Vertex Cover as a Linear Program

min
∑
i∈V

wixi

s.t. xi + xj ≥ 1 (i, j) ∈ E

xi ∈ [0, 1] i ∈ V.

Claim 2. Let S∗ denote the optimal vertex cover of minimum weight, and let x∗ denote the optimal
solution to the Linear Program. Then

∑
i∈V wix

∗
i ≤ w(S∗) = opt.

Proof. The vertex cover problem is equivalent to the integer program, whereas the linear program is
a relaxation. Then there are simply more solutions allowed to the linear program, so the minimum
can only be smaller.

Linear Programming Duality

The Dual of a Linear Program

Every linear program has a dual linear program. We call the original linear program the primal. A
maximization problem’s dual is a minimization problem. There are a bunch of amazing properties
that come from LP duality.

We have the following optimization problem: You’re selling nutrients to the BU population and
deciding what to price each macro at. The decision variables xi will indicate the price per nutrient.
The constraints indicate that these prices together cannot exceed the prices for the grains that



Figure 1: Left: The red arrow represents the objective function, with the green line tangent to the
set of feasible integer solutions, indicating the optimal integral point, and the blue line tangent to
the relaxed convex feasible set, indicating the best fractional point in the relaxation, with a larger
objective function. Right: The linear program for the figure on the left.

you’re extracting the nutrients from, since that’s already the market price. The goal is to maximize
your profits from a population that is buying exactly the nutrient diet of 8kg starch, 15kg proteins,
and 3kg vitamins.

Primal:

max 8x1 + 15x2 + 3x3

subject to 5x1 + 4x2 + 2x3 ≤ 0.6 (grain 1) (y1)

7x1 + 2x2 + 1x3 ≤ 0.35 (grain 2) (y2)

x1, x2, x3 ≥ 0 (non-negativity)

Dual:

min 0.6y1 + 0.35y2

subject to 5y1 + 7y2 ≥ 8 (starch) (x1)

4y1 + 2y2 ≥ 15 (proteins) (x2)

2y1 + 1y2 ≥ 3 (vitamins) (x3)

y1, y2 ≥ 0 (non-negativity)

To take the dual: Label each primal constraint with a new dual variable. In our new linear pro-
gram, each dual constraint will correspond to a primal variable. For the left-hand side, count up
the appearances of this constraint’s primal variable (e.g., x1) in each of the primal constraints and
multiply them by the dual variable for those constraints. That is, if x1 appears 5 times (5x1) in
constraint for y1, then add 5y1 to x1’s constraint. Don’t forget to include its appearance in the
primal’s objective function, but this will be the right-hand side of the constraint. Finally, the dual
objective function is given by the right-hand side coefficients and their correspondence to the dual
variables via the constraints in the primal. (See above).

Sometimes, the dual can even be interpreted as a related problem. In fact, this dual can be



interpreted as exactly our nutrition example from Lecture #18: BU has hired you to optimize
nutrition for campus dining. There are two possible grains they can offer, grain 1 and grain 2, and
each contains the macronutrients given in the table in Lecture #18, plus cost per kg for each of
the grains. The nutrition requirement per day of starch, proteins, and vitamins is 8, 15, and 3
respectively. Determine how much of each grain to buy such that BU spends as little but meets its
nutrition requirements.

The following is the normal form for a maximization problem primal and its primal:

max cTx min bTy

subject to Ax ≤ b subject to ATy ≥ c

For the above example:

A =

[
5 4 2
7 2 1

]
b =

[
0.6
0.35

]
c =

 8
15
3


Example 3: Maximum Matching

Given a graph G = (V,E) choose a maximum size matching—a set of edges S such that no vertex
is covered by more than one edge.

Decision variables: xe indicating whether edge e is in the matching.

Primal Linear Program:

max
∑
e∈E

xe

subject to
∑
e:v∈e

xe ≤ 1 ∀v (vertex matched at most once) (yv)

xe ≥ 0 ∀e (non-negativity)

Taking the dual of the above primal, we get the following linear program:

min
∑
v∈V

yv

subject to
∑
v∈e

yv ≥ 1 ∀e (edge covered) (xe)

yv ≥ 0 ∀v (non-negativity)

What problem is this? (Fractional) Vertex Cover!


