Zero-Sum Games and the Minimax Theorem

Notation:

- $m \times n$ payoff matrix $\mathbf{A}-a_{i j}$ is the row player's payoff for outcome (i, j) when row player plays strategy i and column player plays strategy j
- mixed row strategy \mathbf{x} (a distribution over rows)
- mixed column strategy y (a distribution over columns)

Expected payoff of the row player:

$$
\begin{aligned}
\sum_{i=1}^{m} \sum_{j=1}^{n} \operatorname{Pr}[\text { outcome }(i, j)] a_{i j} & =\sum_{i=1}^{m} \sum_{j=1}^{n} \underbrace{\operatorname{Pr}[\text { row } i \text { chosen }]}_{=x_{i}} \underbrace{\operatorname{Pr}[\text { column } j \text { chosen }]}_{=y_{j}} a_{i j} \\
& =\mathbf{x}^{T} \mathbf{A} \mathbf{y}
\end{aligned}
$$

Theorem 1 (Minimax Theorem). For every two-player zero-sum game A,

$$
\begin{equation*}
\max _{\mathbf{x}}\left(\min _{\mathbf{y}} \mathbf{x}^{T} \mathbf{A} \mathbf{y}\right)=\min _{\mathbf{y}}\left(\max _{\mathbf{x}} \mathbf{x}^{T} \mathbf{A} \mathbf{y}\right) . \tag{1}
\end{equation*}
$$

Or in English, the expected payoff of the row play is the same whether the row player goes first or second. This is called the value of the game.

From LP Duality to Minimax

$$
\begin{align*}
\max _{\mathbf{x}}\left(\min _{\mathbf{y}} \mathbf{x}^{T} \mathbf{A} \mathbf{y}\right) & =\max _{\mathbf{x}}\left(\min _{j=1}^{n} \mathbf{x}^{T} \mathbf{A} \mathbf{e}_{j}\right) \tag{2}\\
& =\max _{\mathbf{x}}\left(\min _{j=1}^{n} \sum_{i=1}^{m} a_{i j} x_{i}\right) \tag{3}
\end{align*}
$$

where \mathbf{e}_{j} is the $j^{\text {th }}$ standard basis vector:

$$
\left(\mathbf{e}_{j}\right)_{i}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

$\max v$

subject to

$$
\begin{gathered}
v-\sum_{i=1}^{m} a_{i j} x_{i} \leq 0 \quad \text { for all } j=1, \ldots, n \\
\sum_{i=1}^{m} x_{i}=1 \\
x_{1}, \ldots, x_{m} \geq 0 \quad \text { and } \quad v \in \mathbb{R}
\end{gathered}
$$

$\min w$

subject to

$$
\begin{aligned}
& w-\sum_{j=1}^{n} a_{i j} y_{j} \geq 0 \quad \text { for all } i=1, \ldots, m \\
& \sum_{j=1}^{n} y_{j}=1 \\
& y_{1}, \ldots, y_{n} \geq 0 \quad \text { and } \quad w \in \mathbb{R}
\end{aligned}
$$

Online Learning

So far: we assumed we could see the future (e.g., scheduling, caching).

What if we can't see the future? This is called an online setting, not like the internet, but as if the input is waiting on line.

An Online Problem

1. The input arrives "one piece at a time."
2. An algorithm makes an irrevocable decision each time it receives a new piece of the input.

Online Decision Making

Choose from expert predictions every time step. An adversary decides who predicts well/poorly in response to your strategy.

Online Decision-Making

At each time step $t=1,2, \ldots, T$:
a decision-maker picks a probability distribution \mathbf{p}^{t} over her experts or actions $i=$ $1, \ldots, N$
an adversary picks a loss vector $\ell^{t}: A \rightarrow[-1,1]$
an action i^{t} is chosen according to the distribution \mathbf{p}^{t}, and the decision-maker receives loss ℓ_{i}^{t}
the decision-maker learns ℓ^{t}, the entire loss vector
The input arrives "one piece at a time."

What should we compare to?

