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Prophet Inequalities

You’re at a casino gambling, and are offered to play the following game. Items will arrive one-by-
one. As an item arrives, you see its value. You may only take a single item, and once you take an
item, the game ends. A priori, you know the distribution of each item. At some point there will
be a red item with the red distribution of values, and at some point there will be a blue item with
the blue distribution of values, and so forth. However, you do not know the order of items (it is
adversarial), and you do not know the exact values of the items (they are drawn from their specific
distributions). Your goal is to come up with an algorithm that competes with the prophet who is
all knowing, so knows the realization of values and the arrival order.

That is, n items will arrive in adversarial order. Item i (which is a label, not necessarily the
order) has value vi drawn from known distribution Fi. Your goal is to determine an algorithm Alg
such that the value you get from gambling competes with the prophet who always gets maxi vi.
However, your competition is over the randomness of the values that are drawn, so you only have
to compete with opt = Ev[maxi vi].

Figure 1: The prophet inequality problem.

To summarize:

• Goal: Pick one item; maximize its value.

• Gambler knows distribution for each item.

• Order is adversarial.

• Inspect each item online (see vi) and irrevocably decide whether to take or pass forever.

• Compete with opt = Ev[maxi vi].

The Prophet Inequality problem was posed by Samuel-Cahn ’84 [9], with the original solution and
analysis that we’ll see by Krengel Sucheston ’78 [6] and Garling. It was brought to Algorithmic
Mechanism Design by Hajiaghayi Kleinberg Sandholm ’07 [3], and a new analysis for this case was
developed by Kleinberg Weinberg ’12 [4, 5].

Prove the following.



Theorem 1. There is a threshold algorithm Alg such that when the gambler takes an item if and
only if its value is above T , Alg ≥ 1

2opt.

Determine what threshold T to use and prove this statement using the following steps:

1. Divide what the algorithm yields from an item (in expectation) into exactly the threshold
and the surplus above the threshold.

2. Lower bound your surplus term.

3. Set your threshold in order to combine like-terms and have opt pop out.

Note: Can you find two different thresholds that give this same approximation?

Proof. We consider two different ways to set the threshold, starting a proof of what our algorithm
obtains using the framework above. Let p denote the probability that some (at least one) vi ≥ T
for i ∈ [n].

We will set the threshold T such that either (1) T = 1
2E[maxi vi], or (2) such that p = 1

2 .
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∑
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Hence a threshold algorithm set using (1) or (2) produces a 1
2 -approximation to the prophet (a

1
2 -competitive ratio).

We reinterpret our problem as follows: we have a single item to sell, and n buyers arrive online
with their values for the item drawn from distributions. We price the item at T . Observe that the
first term above is the expected revenue earned from selling the item to the buyers at T , and the
second term is the expected utility, or surplus. Welfare is equal to revenue + utility.



Exercise: You could see this as a mechanism for a buyer to maximize social welfare. Could
you design a mechanism to maximize revenue using the prophet inequality?

[Hint: Use virtual values.]

See Roughgarden Twenty Lectures (364A) Lecture 6 Section 3 for a formal treatment on how
to do this.

The Multidimensional Extension [1, 2]

Imagine now that a seller has m goods to sell, and n buyers will arrive online one at a time. They
have a combinatorial value function vi : 2m → R≥0 and each function vi is drawn from a known
prior distribution. Our goal is to set prices such that the welfare of the allocation is maximized.

That is, if we determine the allocation x such that xi is the allocation to bidder i, we wish to
set a pricing function p : 2m → R≥0 such that under online arrival, the buyer’s allocations maxi-
mize

∑
i vi(xi).

We will use the notation x to denote a partial allocation rule, for instance, the allocation of items
after arrival so far. We will use x′ to denote a second allocation rule that, combined with the partial
allocation rule of x, is still feasible. That is, in this online context, x′ is a feasible allocation of the
remaining items not allocated by x.

We will use the notation opt(v | x) to denote the optimal welfare of all allocations that are feasible
with x, i.e., the value remaining (not including the value from x) when x is already committed to.
Formally,

opt(v | x) = max
x′:x∪x′ feas.

vi(x
′
i).

Definition 1. A pricing rule p is (α, β)-balanced with respect to valuation profile v = (v1, v2, . . . , vn)
if, for all feasible allocations x and x′ such that x ∪ x′ is feasible:

1.
∑

i p(xi) ≥
1
α · (opt(v)− opt(v | x))︸ ︷︷ ︸

value lost due to allocating x

2.
∑

i p(x
′
i) ≤ β · opt(v | x)︸ ︷︷ ︸

value remaining after allocating x

Prices are weakly balanced if the second condition is relaxed to opt(v).

We can think of the quantity on the right hand side of (1) as the externality with respect to already
allocation x.

Theorem 2. If a pricing rule p is (α, β)-balanced with respect to valuations v, then posting prices
δ · p guarantees value at least 1

αβ+1 · opt(v) for δ = α
αβ+1 .

Sanity check: In the single-item case, a price p = maxi vi is (1, 1)-balanced. Which implies?

A 1/2-approximation of welfare by setting 1
2 maxi vi as the price.



Proof. Let x be the allocation sold, and let x′ be the allocation achieving opt(v | x). Then we get
that

Revenue =
∑
i

δ · p(xi) ≥
δ

α
(opt(v)− opt(v | x))

Utility ≥
∑
i

(vi(x
′
i)− δp(x′i)) ≥ (1− δβ)opt(v | x)

Clearly
Welfare(x ∪ x′) ≥ Revenue(x) + Utility(x′).

Setting δ so that δ
α = (1− δβ) concludes the proof.

Extension to unknown values: For (α, β)-balanced pv, let p = Ev∼F [pv]. Then posting prices
δp guarantees expected value 1

αβ+1 · E[opt(v)]. (For weakly balanced, it’s 1
4αβ .)

Construction of Balanced Prices: If any individual’s allocation is bounded at k items, and
if x∗ is the optimal allocation, then we set

pj =

{
1
|x∗i |

vi(x
∗
i ) j ∈ x∗i

0 otherwise
.

Figure 2: Construction of balanced prices. Figure from Brendan Lucier.

Claim 1. These are weakly (k, 1)-balanced.

Proof. Let S(x) denote the items allocated by x, that is, S(x) =
⋃
i xi. Let M(j) denote the index

of the bidder who owns item j in allocation x∗; that is, j ∈ x∗i ⇐⇒ i = M(j). For condition (1),
we see that
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That is, for any x, the sum of prices of x is at least 1/k of the value of allocations in opt that
intersect x.

For condition (2), we see

∀x′,
∑
i

p(x′i) ≤
∑

j 6∈S(x)

1

|x∗M(j)|
vM(j)(x

∗
M(j)) ≤ 1 · opt(v).

Observe that the right hand side does not hold for opt(v | x) because item j’s price is the average
value of the bundle that item j is in in the optimal allocation. However, the value of item j
itself may be far higher than the average of the bundle, so this quantity may not be bounded by
opt(v | x).

That is, after removing x, the total price of the items left over is at most the total price of ALL
items, which is opt(v).

Our conclusion is then that there exist items prices that guarantee a 4k-approx. to the optimal
expected welfare.

Additional Resources

I’m not aware of any textbooks on the subject, but here is a list of resources on prophet inequalities
and the breadth of work in more recent research:

• 2017 Survey “An Economic View of Prophet Inequalities” by Brendan Lucier [7]:
https://sigecom.org/exchanges/volume 16/1/LUCIER.pdf

• 2016 Simons Bootcamp Talks by Matt Weinberg

– Part I: https://www.youtube.com/watch?v=NwF4Xr0-6Rc

– Part II: https://www.youtube.com/watch?v=E19TWolvn8I

• EC 2021 Tutorial on Prophet Inequalities by Michal Feldman, Thomas Kesselheim, and Sahil
Singla

– Website (slides and reading list): http://www.thomas-kesselheim.de/tutorial-prophet-
inequalities/

– Part 1: https://www.youtube.com/watch?v=qbHd0g9RkCg

– Part 2: https://www.youtube.com/watch?v=l20KP5IIgcQ

– Part 3: https://www.youtube.com/watch?v=lyOUcYfNEiA
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