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Online Bipartite Matching [KVV ‘90, EFFS ’21]

In the online bipartite matching setting [Karp, Vazirani, and Vazirani, 1990], there is a bipartite
graph G = (L∪R,E) where are vertices are split into the left side, L, and the right side, R. Edges
are unweighted, i.e., all have a weight of 1. We are in an online setting where we see R up front,
but the vertices of L arrive online, and as each vertex arrives, we see which edges are incident to
it from R. The objective is to match vertices in L to those in R, immediately and irrevocably as
each vertex arrives, forming a matching M , such that we maximize the cardinality of the matching
|M | and compare well to the maximal offline matching.

In the original paper, Karp et al. [1990] show:

• For every deterministic algorithm, |M | ≤ n/2.

• Choosing a random match for each vertex independently implies that E[|M |] ≤ n/2.

• RANKING (KVV): Choosing a global ranking π U.A.R. and matching according to π implies
that E[|M |] ≥ (1− 1/e)n.

• This is tight!

The first proof [Karp et al., 1990] was very complicated (and imprecise). Simplifications were given
by Goel and Mehta [2008], Birnbaum and Mathieu [2008], Devanur, Jain, and Kleinberg [2013].

Figure 1: Online Bipartite Matching: RANKING and its economic interpretation.

Today, we’ll look at an equivalent algorithm and simplified analysis due to Eden, Feldman, Fiat,
and Segal [2021]. We’ll use the following set-up: Let R be items and L buyers. They have value
1 or 0 for each item (depending on whether there is an edge). They are unit-demand (want one
match). Then our algorithm is as follows.

•



•

Observations:

• For any F supported on (0, 1) without pointmasses, choosing item prices i.i.d. from F is
equivalent to:

• The welfare of the matching is:

We can rewrite it as:

Lemma 1. For F that samples w ∼ U [0, 1] and sets pj = ew−1, we have for every buyer i and item
j such that (i, j) is an edge in M :

E[utili + revj ] ≥ 1− 1/e.

Corollary 1. |M | ≥

Figure 2: Economic analysis of RANKING.

Proof.



Conclusions:

• Taking the economic perspective can be very useful in algorithm analysis.

• Decomposing value into revenue + utility is a powerful tool, e.g., [Feldman, Gravin, and
Lucier, 2015, Dütting, Feldman, Kesselheim, and Lucier, 2017, Ehsani, Hajiaghayi, Kessel-
heim, and Singla, 2018].

Robustness: Prior-Independence

“Prior-independent” results give us guarantees in the event that the designer doesn’t know the
distribution F from which the bidders’ values are drawn. In this case, we assume that their values
are still drawn from a prior distribution, as in the Bayesian setting, so there is some revenue-optimal
mechanism opt(F ) that we wish to approximate, we just have to do so without knowing F .

The Bulow-Klemperer Result

One famous result takes the form of resource augmentation.

Theorem 2 (Bulow and Klemperer [1994]). For i.i.d. regular single-item environments, the ex-
pected revenue of the second-price auction with n+ 1 agents is at least that of the optimal auction
with n agents.

Let’s talk about what this theorem is saying. Instead of finding the optimal auction tailored to
a distribution F for n agents, you can use the Vickrey auction, which requires no prior knowledge
of the distribution, so long as:

•

•

This result does not hold without these assumptions. However, it is a very strong result, should
our setting meet these assumptions.

Proof.



The Single Sample Mechanism

Can’t recruit extra buyers? Instead, we can just exclude one. This is what the single sample result
says.

Theorem 3 (Dhangwatnotai, Roughgarden, and Yan [2015]). Given a random sample from a
bidder’s distribution, posting it as a take-it-or-leave-it price gives a 1

2 -approximation to the optimal
revenue.

Figure 3: Geometric intuition for a posted-price from a single sample.

Proof. In quantile space!

It turns out, using a single sample from the buyers’ distribution to set reserve prices and running
VCG is a good approximation to the optimal mechanism. See Hartline chapter 5 for more.
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