DS 574 Algorithmic Mechanism Design
Fall 2023

Lecture \#14 Worksheet

Prof. Kira Goldner

Online Bipartite Matching [KVV '90, EFFS '21]

In the online bipartite matching setting [Karp, Vazirani, and Vazirani, 1990], there is a bipartite graph $G=(L \cup R, E)$ where are vertices are split into the left side, L, and the right side, R. Edges are unweighted, i.e., all have a weight of 1 . We are in an online setting where we see R up front, but the vertices of L arrive online, and as each vertex arrives, we see which edges are incident to it from R. The objective is to match vertices in L to those in R, immediately and irrevocably as each vertex arrives, forming a matching M, such that we maximize the cardinality of the matching $|M|$ and compare well to the maximal offline matching.

In the original paper, Karp et al. [1990] show:

- For every deterministic algorithm, $|M| \leq n / 2$.
- Choosing a random match for each vertex independently implies that $\mathbb{E}[|M|] \leq n / 2$.
- RANKING (KVV): Choosing a global ranking π U.A.R. and matching according to π implies that $\mathbb{E}[|M|] \geq(1-1 / e) n$.
- This is tight!

The first proof [Karp et al., 1990] was very complicated (and imprecise). Simplifications were given by Goel and Mehta [2008], Birnbaum and Mathieu [2008], Devanur, Jain, and Kleinberg [2013].

Figure 1: Online Bipartite Matching: RANKING and its economic interpretation.
Today, we'll look at an equivalent algorithm and simplified analysis due to Eden, Feldman, Fiat, and Segal [2021]. We'll use the following set-up: Let R be items and L buyers. They have value 1 or 0 for each item (depending on whether there is an edge). They are unit-demand (want one match). Then our algorithm is as follows.

Observations:

- For any F supported on $(0,1)$ without pointmasses, choosing item prices i.i.d. from F is equivalent to:
- The welfare of the matching is:

We can rewrite it as:
Lemma 1. For F that samples $w \sim U[0,1]$ and sets $p_{j}=e^{w-1}$, we have for every buyer i and item j such that (i, j) is an edge in M :

$$
\mathbb{E}\left[u t i l_{i}+\operatorname{rev}_{j}\right] \geq 1-1 / e
$$

Corollary 1. $|M| \geq$

Figure 2: Economic analysis of RANKING.
Proof.

Conclusions:

- Taking the economic perspective can be very useful in algorithm analysis.
- Decomposing value into revenue + utility is a powerful tool, e.g., [Feldman, Gravin, and Lucier, 2015, Dütting, Feldman, Kesselheim, and Lucier, 2017, Ehsani, Hajiaghayi, Kesselheim, and Singla, 2018].

Robustness: Prior-Independence

"Prior-independent" results give us guarantees in the event that the designer doesn't know the distribution F from which the bidders' values are drawn. In this case, we assume that their values are still drawn from a prior distribution, as in the Bayesian setting, so there is some revenue-optimal mechanism $\operatorname{Opt}(F)$ that we wish to approximate, we just have to do so without knowing F.

The Bulow-Klemperer Result

One famous result takes the form of resource augmentation.
Theorem 2 (Bulow and Klemperer [1994]). For i.i.d. regular single-item environments, the expected revenue of the second-price auction with $n+1$ agents is at least that of the optimal auction with n agents.

Let's talk about what this theorem is saying. Instead of finding the optimal auction tailored to a distribution F for n agents, you can use the Vickrey auction, which requires no prior knowledge of the distribution, so long as:

This result does not hold without these assumptions. However, it is a very strong result, should our setting meet these assumptions.

Proof.

The Single Sample Mechanism

Can't recruit extra buyers? Instead, we can just exclude one. This is what the single sample result says.

Theorem 3 (Dhangwatnotai, Roughgarden, and Yan [2015]). Given a random sample from a bidder's distribution, posting it as a take-it-or-leave-it price gives a $\frac{1}{2}$-approximation to the optimal revenue.

Figure 3: Geometric intuition for a posted-price from a single sample.

Proof. In quantile space!

It turns out, using a single sample from the buyers' distribution to set reserve prices and running VCG is a good approximation to the optimal mechanism. See Hartline chapter 5 for more.

References

Benjamin Birnbaum and Claire Mathieu. On-line bipartite matching made simple. Acm Sigact News, 39(1):80-87, 2008.

Jeremy I Bulow and Paul D Klemperer. Auctions vs. negotiations, 1994.
Nikhil R Devanur, Kamal Jain, and Robert D Kleinberg. Randomized primal-dual analysis of ranking for online bipartite matching. In Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages 101-107. SIAM, 2013.

Peerapong Dhangwatnotai, Tim Roughgarden, and Qiqi Yan. Revenue maximization with a single sample. Games and Economic Behavior, 91:318-333, 2015.

Paul Dütting, Michal Feldman, Thomas Kesselheim, and Brendan Lucier. Prophet inequalities made easy: Stochastic optimization by pricing non-stochastic inputs. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 540-551. IEEE Computer Society, 2017. doi: 10.1109/FOCS.2017.56. URL https://doi.org/10.1109/FOCS.2017.56.

Alon Eden, Michal Feldman, Amos Fiat, and Kineret Segal. An economics-based analysis of ranking for online bipartite matching? In Symposium on Simplicity in Algorithms (SOSA), pages 107110. SIAM, 2021.

Soheil Ehsani, MohammadTaghi Hajiaghayi, Thomas Kesselheim, and Sahil Singla. Prophet secretary for combinatorial auctions and matroids. In Proceedings of the twenty-ninth annual acm-siam symposium on discrete algorithms, pages 700-714. SIAM, 2018.

Michal Feldman, Nick Gravin, and Brendan Lucier. Combinatorial auctions via posted prices. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 123-135. SIAM, 2015.

Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with applications to adwords. In $S O D A$, volume 8, pages 982-991, 2008.

Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal algorithm for on-line bipartite matching. In Proceedings of the twenty-second annual ACM symposium on Theory of computing, pages 352-358, 1990.

