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Myerson’s Lemma

We now come to two important definitions. Both articulate a property of allocation rules.

Definition 1 (Implementable Allocation Rule). An allocation rule x is implementable if there is a
payment rule p such the sealed-bid auction (x,p) is DSIC.

Definition 2 (Monotone Allocation Rule). An allocation rule x for a single-parameter environment
is monotone if for every bidder i and bids b−i by the other bidders, the allocation xi(z,b−i) to i
is nondecreasing in its bid z.

That is, in a monotone allocation rule, bidding higher can only get you more stuff.

For example, the single-item auction allocation rule that awards the good to the highest bidder is
monotone: if you’re the winner and you raise your bid (keeping other bids constant), you continue
to win. By contrast, awarding the good to the second-highest bidder is a non-monotone allocation
rule: if you’re the winner and raise your bid high enough, you lose.

We state Myerson’s Lemma in three parts; each is conceptually interesting and will be useful
in later applications.

Theorem 1 (Myerson’s Lemma Myerson [1981]). Fix a single-parameter environment.

(a) An allocation rule x is implementable if and only if it is monotone.

(b) If x is monotone, then there is a unique payment rule such that the sealed-bid mechanism
(x,p) is DSIC [assuming the normalization that bi = 0 implies pi(b) = 0].

(c) The payment rule in (b) is given by an explicit formula:

pi(bi,b−i) = bi · xi(bi,b−i)−
∫ bi

0
xi(z,b−i)dz.

Myerson’s Lemma is the foundation on which we’ll build most of our mechanism design
theory. Let’s review what it is saying.

Part (a): Finding an allocation rule that can be made DSIC (is implementable, Definition 1) seems con-
fusing, but is actually equivalent to and just as easy as checking if the allocation is monotone
(Definition 2).

Part (b): If an allocation rule is implementable (can be made to be DSIC), then there’s no ambiguity
in what the payment rule should be.

Part (c): There’s a simple and explicit formula for this!



Proof of Myerson’s Lemma (Theorem 1). As shorthand, write x(z) and p(z) for the allocation
xi(z,b−i) and payment pi(z,b−i) of i when it bids z, respectively.

Suppose (x,p) is DSIC, and consider any 0 ≤ y < z. Because bidder i might well have private
valuation z and can submit the false bid y if it wants, DSIC demands that

z · x(z)− p(z)︸ ︷︷ ︸
utility of bidding z given value z

≥ z · x(y)− p(y)︸ ︷︷ ︸
utility of bidding y given value z

(1)

Similarly, since bidder i might well have the private valuation y and could submit the false bid
z, (x,p) must satisfy

y · x(y)− p(y)︸ ︷︷ ︸
utility of bidding y given value y

≥ y · x(z)− p(z)︸ ︷︷ ︸
utility of bidding z given value y

(2)

Rearranging inequalities (1) and (2) yields the following sandwich, bounding p(y) − p(z) from
below and above:

y · [x(z)− x(y)] ≤ p(z)− p(y) ≤ z · [x(z)− x(y)] (3)

From here, we can conclude:

• x must be monotone.

• p′(z) = z · x′(z).

Why? First, if x is not monotone, the inequalities in (3) would be violated. Second, assuming x is
differentiable, by dividing (3) by z − y and taking the limit as y → z, we obtain p′(z) = z · x′(z).
Even for non-differentiable x, we obtain a similar equation in terms of the change in the allocation
at z.

Assuming that p(0) = 0 then gives the payment identity

pi(bi,b−i) =

∫ bi

0
z · d

dz
xi(z,b−i)dz

or alternatively, after integration by parts,

pi(bi,b−i) = bi · xi(bi,b−i)−
∫ bi

0
xi(z,b−i)dz (4)

for every bidder i, bid bi, and bids b−i by the others.
Equation (3) tells us that this is the only payment rule that could possibly be DSIC. But does

it in fact satisfy DSIC when x is monotone?
Bidder i’s utility will then be

ui(bi,b−i) = vi · xi(bi,b−i)− pi(bi,b−i),

or with the payment identity,

ui(bi,b−i) = (vi − bi) · xi(bi,b−i) +

∫ bi

0
xi(z,b−i)dz

which for monotone x is maximized when bi = vi, independent of b−i, as desired. �



Single-Parameter Environments

All of our definitions and Myerson’s Lemma actually apply to a more general setting which we call
single-parameter environments. The main idea here is that each bidder i only has a single piece
of private information, like their value vi, that needs to be elicited in order to run the mechanism.
Here are some other examples of non-single-item yet single-parameter environments.

• Single-item: A seller has a single item to sell. The set of feasible outcomes X satisfy∑n
i=1 xi ≤ 1 and xi ∈ {0, 1}.

• k identical items: A seller has k identical items to sell and each buyer gets at most one.
The set of feasible outcomes X satisfy

∑n
i=1 xi ≤ k and xi ∈ {0, 1}.

• Sponsored search: There are k advertising slots, each with click-through-rate αj . A buyer
i gets value vi ·αj from winning the jth slot. The set of feasible outcomes X satisfy

∑n
i=1 xi ≤∑k

j=1 αj and xi ∈ {αj}kj=1 ∪ {0} where xi = αj if bidder i is assigned the jth slot.

Exercise (optional): Graph an allocation rule as a function of a single-bidder (hold b−i fixed) with
value on the x-axis and allocation on the y-axis. Show that for a DSIC auction, Myerson’s Lemma
implies that the payment is the area to the left of the allocation curve, and a bidder’s utility is the
area under the allocation curve.
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