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The Revelation Principle

So far, we’ve been investigating Dominant-Strategy Incentive-Compatible (DSIC) mechanisms. To
be DSIC, this means that

(1) Every participant in the mechanism has a dominant strategy, no matter what their private
valuation is.

(2) This dominant strategy is direct revelation, where the participant truthfully reports all of
their private information to the mechanism.

There are mechanisms that satisfy (1) but not (2). To give a silly example, imagine a single-item
auction in which the seller, given bids b, runs a Vickrey auction on the bids 3b. Every bidder’s
dominant strategy is then to bid vi/3.

For a formal definition of a direct revelation mechanism:

Definition 1. A mechanism is direct revelation if it is single-round, sealed-bid, and has action
space equal to the type (value) space. That is, an agent can bid any type they might have, and an
agent’s action is bidding a type.

The Revelation Principle and the Irrelevance of Truthfulness

The Revelation Principle states that, given requirement (1), there is no need to relax requirement
(2): it comes “for free.”

Theorem 1 (Revelation Principle for DSIC Mechanisms). For every mechanism M in which ev-
ery participant has a dominant strategy (no matter what their private information), there is an
equivalent direct-revelation DSIC mechanism M ′.

Equivalent here means that as a function of the valuation profile (not bids), the allocation and
payment (x(v), p(v)) are equivalent in both M and M ′.

Proof. The proof uses a simulation argument; see Figure 1. By assumption, in mechanism M , every
bidder i has a dominant strategy σi(vi) whatever their vi.

We construct the following mechanism M ′, the mechanism takes over the responsibility of
applying the dominant strategy. Precisely, (direct-revelation) mechanism M ′ accepts sealed bids
b1, . . . , bn from the players. It submits the bids σ1(b1), . . . , σn(bn) to the mechanism M , and chooses
the same outcome (e.g., winners of an auction and selling prices) that M does.

Mechanism M ′ is DSIC: If a participant i has private information vi, then submitting a bid
other than vi can only result in M ′ playing a strategy other than σi(vi) in M , which can only
decrease i’s utility.



Figure 1: Proof of the Revelation Principle. Construction of the direct-revelation mechanism M ′,
given a mechanism M with dominant strategies.

The takeaway from the Revelation Principle (Theorem 1) is that it is without loss to de-
sign direct revelation mechanisms. That is, you might as well require your mechanism to be
incentive-compatible.

Beyond Dominant-Strategy: Bayesian Settings

There are many reasons why we can’t always require dominant strategies when design mechanisms.

(1) Requiring such a strong concept might not be tractable.

(2) Agents do not always have dominant strategies! What then?

We’ll now introduce the Bayesian setting.

Suppose the valuation vi of bidder i is drawn from a prior distribution Fi.

• We abuse notation and let Fi denote the cumulative distribution function (CDF) of the
distribution; that is, Fi(x) = Prvi∼Fi [vi ≤ x].

• We use fi(x) to denote the probability density function (pdf) of the distribution; that is,
fi(x) = d

dxFi(x).

• We use F or ~F to denote the joint distribution of the marginal buyer distributions Fi. That
is, if the buyers are independently distributed, then F is the product distribution F = ×iFi.
(Note however that buyers are not necessarily independently distributed in all settings.)

Unless otherwise noted, we assume that the prior distribution F is common knowledge to all bidders
and the mechanism designer (the seller).



Definition 2. A Bayes-Nash equilibrium (BNE) for a joint distribution F is a strategy profile
σ = (σ1, . . . , σn) such that for all i and v, σi(vi) is a best-response when other agents play σ−i(v−i)
when v−i ∼ F−i |vi .

Claim 1. Consider two identically and independently drawn bidders from F = U [0, 1]. It is a
(symmetric) BNE for each bidder to bid σi(vi) = vi/2 in the first-price auction.

Proof. Suppose bidder 2 is playing the strategy σ2(v2) = v2/2. We prove that bidder 1’s best-
response is σ1(v1) = v1/2. For now, call the bid given by σ1(v1) = b1.

Given bidder 2’s strategy, bidder 1’s expected utility is

Ev2 [ui(σ1(v1), σ2(v2)] = v1 · Ev2 [x1(σ1(v1), σ2(v2))]− Ev2 [p1(σ1(v1), σ2(v2))]

= v1 · Prv2 [b1 > v2/2]− Ev2 [b1 | b1 > v2/2] x, p in FPA

= Prv2 [b1 > v2/2] · [v1 − b1] def E
= F (2b1) · [v1 − b1] def F (·)
= (2b1) · [v1 − b1] F = U [0, 1]

= 2b1v1 − 2b21
d

db1
Ev2 [ui(b1, v2/2)] = 2v1 − 4b1 differentiate to max

=⇒ b1 = v1/2

Hence bidder 1’s best-response strategy is to bid σ1(v1) = v1/2 in response to σ2(v2) = v2/2, and
thus these strategies are a BNE.

Theorem 2 (Revenue Equivalence). The payment rule and revenue of a mechanism is uniquely
determined by its allocation. Hence, any two mechanisms with the same allocation must earn the
same revenue.

What is this theorem a corollary of? Prove this for the first-price auction and the Vickrey (second-
price) auction in the above setting!

Proof. This is just a corollary of Myerson’s Lemma! As we pointed out, the only variables in the
payment identity are the allocation rule! Payment is 100% determined by the allocation rule! Then
two mechanisms with the same allocation must have the same payments.

Consider the first-price auction and the second-price auction each with two bidders i.i.d. from
U [0, 1]. Let V 1 and V 2 denote the random variables that are the highest and second-highest draws
from U [0, 1], respectively. Note that two draws from the uniform distribution evenly divide the
interval in expectation: EV 1,V 2∼U [0,1][V

1] = 2/3 and EV 1,V 2∼U [0,1][V
2] = 1/3.

In the first-price auction, the item is allocated to V 1 at a payment of its BNE bid of V 1/2.
Then the expected winner’s payment (and thus revenue) is 1

2E[V 1] = 1/3.
In the second-price auction, the item is allocated to V 1 at a payment of the second-highest

bid b2 = V 2, since Vickrey is DSIC. Then the expected winner’s payment (and thus revenue) is
E[V 2] = 1/3.



Bayesian Settings

Using notions from the Bayesian setting and how bidders Bayesian update as they learn information,
we define three stages of the auction:

1. ex ante: Before any information has been drawn; i only knows F.

2. interim: Values vi have been drawn; i only knows their own valuation, and thus the updated
prior F |vi .

3. ex post : The auction has run and concluded. All bidders know all v1, . . . , vn.

Typically we discuss the ex post allocation and payment rules as a function of all of the values.
However, in the Bayesian setting, to reason about BIC, it often makes sense to take in terms
of interim allocation and payment rules which have the same information as bidder i before the
auction is run.

Definition 3. We define the interim allocation and payment rules in expectation over the updated
Bayesian prior given i’s valuation:

xi(vi) = PrF[xi(v) = 1 | vi] = EF[xi(v) | vi]

and
pi(vi) = EF[pi(v) | vi].

Our definition of Bayesian Incentive-Compatibility then follows:

Definition 4. A mechanism with interim allocation rule x and interim payment rule p is Bayesian
Incentive-Compatible (BIC) if

vixi(vi)− pi(vi) ≥ vixi(z)− pi(z) ∀i, vi, z.

Exercise (optional):

• Extend Myerson’s Lemma and the payment identity for Bayesian Incentive-Compatible (BIC)
mechanisms.

• Extend the Revelation Principle for BIC mechanisms.
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