DS 574 Algorithmic Mechanism Design Lecture #4
Fall 2023 Prof. Kira Goldner

Revenue Maximization and Myersonian Virtual Welfare

Bayesian Stages and Interim Rules

Using notions from the Bayesian setting and how bidders Bayesian update as they learn information,
we define three stages of the auction:

1. ex ante: Before any information has been drawn; ¢ only knows F.

2. interim: Values v; have been drawn; ¢ only knows their own valuation, and thus the updated
prior F |,,.

3. ex post: The auction has run and concluded. All bidders know all bids b1, ..., b,.

Typically we discuss the ex post allocation and payment rules as a function of all of the values.
However, in the Bayesian setting, to reason about BIC, it often makes sense to take in terms
of interim allocation and payment rules which have the same information as bidder i before the
auction is run.

Definition 1. We define the interim allocation and payment rules in expectation over the updated
Bayesian prior given ¢’s valuation:

x;(v;) = Prp[z;(v) = 1| v;] = Ep[xi(v) | vi]

and
pi(vi) = Ep[pi(v) | vi].
Our definition of Bayesian Incentive-Compatibility then follows:

Definition 2. A mechanism with interim allocation rule x and interim payment rule p is Bayesian
Incentive-Compatible (BIC) if

v (Vi) — pi(vi) > vizi(2) — pi(z) Vi, v, 2.

Using these, we can more easily prove the BIC/BNE versions of Myerson’s Lemma and the Reve-
lation Principle.

Virtual Welfare

Imagine a single buyer will arrive with their private value v. We want to design DSIC mechanisms.

What mechanism should you use to maximize welfare (), v;x;) Always give the bidder the item,
always give it away for free!

What should you do to maximize (expected) revenue? Post a price that maximizes REV =
max, r - [1 — F(r)].



Definition 3. In a deterministic mechanism, given other bids b_;, bidder ¢’s critical bid is the
minimum bid b} = min{b; : z;(b;, b_;) = 1} such that bidder ¢ is allocated to.
Then with b_; fixed, for all winning v; > b}, i’s payment p;(v;,b_;) = b7 is their critical bid.
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What is winner ¢’s critical bid in a single-item auction? The second-highest bid!

What about in the k identical item setting? The k + 15 bid!

Maximizing Expected Revenue

Recall:
e The revelation principle says that it’s without loss to focus only on truthful mechanisms.

e Payment is determined by the allocation:
b;
pi(bi,b_i) = b - xi(b;,b_;) — / zi(z,b_;) dz
0

We want to maximize Eyr[D>_, pi(v)].

IEfusz [pz Vi, V z / fz (%3 pz Vi, V )dvz

/ Filws) [uz 250 v_s) — /'xl(z v_)dz] dv;
:/0 [fl(m%(vz,v D) — (v, Vi [/ fi(z ”dvi (%)

- /ooo [fi(”””i‘”(% v—i) = @i(vi, v—i)[1 — ﬂ(w)]} dv;

_ /O ) ailvn Vi) [Ui— W] du;

=Ey,~r5 @i (vi)xi(vi, v_i)]

where 1 F(un)
plo) =v =y

is the Myersonian virtual value and (x) follows by switching the order of integration. Then

REVENUE = EyF [Z pi Z EvoF [pz Z EVNF 901 ('Uz)xz (Uu \ e Z)]

i

Note that this does require takes E, ,.g_, of both sides of our previous equation.

= EVNF[Z ¢i(vi)z;(v)] = VIRTUAL WELFARE



Given this conclusion, how should we design our allocation rule x to maximize expected virtual
welfare (expected revenue)? Give the item to the bidder with the highest virtual value!

When would this cause a problem with incentive-compatibility? When the corresponding x isn’t
monotone!

Definition 4. A distribution F is regular if the corresponding virtual valuation function p(v) =

1-F(v) . . . .
~ ) s strictly increasing.

Suppose we are in the single-item setting and all of the distributions are regular. What do the
payments look like in the virtual-welfare-maximizing allocation?

For a fixed b_;, if ¢ is the winner, then ¢’s payment is 4’s critical bid, which is ¢, 1(b2) where
by is the second highest bid. Exercise: what about for £ identical items?

Claim 1. A virtual welfare maximizing allocation x is monotone if and only if the virtual value
functions are regular.

Exercise: Argue this.
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(a) Uniform agent virtual value. (b) Bimodal agent virtual value.
Figure 1: Virtual value functions ¢(v) = v — 1}1(2()”) for the uniform and bimodal agent examples.

It will be helpful to keep the following two examples in mind:
a. a uniform agent with v ~ U[0, 1]. Then F(z) = x and f(z) = 1.

b. a bimodal agent with

Do the following;:

e Calculate the virtual values for both examples.

a. pv)=2v—-1



b.l_F(v):{zllJr(?)?,v)'i v € [0,3] © go(v):{g(vl) v € 0, 3]
v €

(%3%) -1 (3,8] 20-8  wve (38
e Are they regular? Are there any issues using the allocation that maximizes expected virtual
welfare?
a. Yep!

b. Nope. As we can see in Figure 1, ¢(3.5) = —1 < ¢(2) = %. This implies a bidder gets
allocated with v = 2 but then stops getting allocated as they increase their value to 3.5.

e What does that allocation actually look like?

a. Allocate to all bidders above v = 0.5 at a price (critical bid) of ¢~1(0) = 0.5.

b. The virtual welfare maximizing allocation isn’t DSIC! Turns out you can do something
to make ¢ monotone and then use the VW-maximizing allocation. We’ll do this later in
class.
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