Single-Parameter Optimal Revenue (continued)

Virtual Welfare Recap

- Maximize welfare $\left(\sum_{i} v_{i} x_{i}\right)$: Always give the bidder the item, always give it away for free!
- Maximize revenue: Post a price that maximizes REv $=\max _{r} r \cdot[1-F(r)]$.

Using only the revelation principle and the payment identity $p_{i}\left(b_{i}, \mathbf{b}_{-i}\right)=b_{i} \cdot x_{i}\left(b_{i}, \mathbf{b}_{-i}\right)-\int_{0}^{b_{i}} x_{i}\left(z, \mathbf{b}_{-i}\right) d z$, we proved the following:

$$
\text { REVENUE }=\mathbb{E}_{\mathbf{v} \sim \mathbf{F}}\left[\sum_{i} p_{i}(\mathbf{v})\right]=\mathbb{E}_{\mathbf{v} \sim \mathbf{F}}\left[\sum_{i} \varphi_{i}\left(v_{i}\right) x_{i}(\mathbf{v})\right]=\text { VIRTUAL WeLfare }
$$

where

$$
\varphi_{i}\left(v_{i}\right)=v_{i}-\frac{\left[1-F_{i}\left(v_{i}\right)\right]}{f_{i}\left(v_{i}\right)} .
$$

Then similarly to welfare, just give the item to the bidder with the highest (non-negative) virtual value! But this doesn't work when $\varphi(\cdot)$ isn't monotone, because then $x(\cdot)$ wouldn't be.

Definition 1. A distribution F is regular if the corresponding virtual valuation function $\varphi(v)=$ $v-\frac{1-F(v)}{f(v)}$ is strictly increasing.

Claim 1. A virtual welfare maximizing allocation x is monotone if and only if the virtual value functions are regular.

(a) Uniform agent virtual value.

(b) Bimodal agent virtual value.

Figure 1: Virtual value functions $\varphi(v)=v-\frac{1-F(v)}{f(v)}$ for the uniform and bimodal agent examples.

Quantile Space and Ironing

In value space:

- an agent has value v.
- the fraction of the distribution with value above v is $1-F(v)$.
- the revenue from posting a "take-it-or-leave-it" price of v is $v[1-F(v)]$.

In quantile space: $q=1-F(v)$.

- an agent has value v.
- the fraction of the distribution with value above v is $q(v)=1-F(v)$.
- the revenue from posting a "take-it-or-leave-it" price of $v(q)=F^{-1}(1-q)$ is $v(q) \cdot q$.

Example: Consider a distribution that is $U[\$ 0, \$ 10]$. Then the quantile 0.1 corresponds to $\$ 9$, where 10% of the population might have a higher value. We let $v(q)$ denote the corresponding value, so $v(0.1)$ is $\$ 9$.

Definition 2. The quantile of a single-dimensional agent with value $v \sim F$ is the measure with respect to F of stronger values, i.e., $q=1-F(v)$; the inverse demand curve maps an agent's quantile to her value, i.e., $v(q)=F^{-1}(1-q)$.

Quantile Distribution: What distribution are quantiles drawn from? That is, what is the probability that an agent is in the top \hat{q} fraction of the distribution? For a distribution $F, \operatorname{Pr}_{F}[q \leq \hat{q}]=$ what?

Note: For everything we do today, we could stay in value space, (and sometimes we'll compare), but we'd have to normalize by the distribution using $f(v)$, which makes everything a bit messier and a bit trickier.

Example: For the example of a uniform agent where $F(z)=z$, the inverse demand curve is $v(q)=1-q$.

For an allocation rule $x(\cdot)$ in value space, we define an allocation rule in quantile space $y(\cdot)$:

$$
y(q)=x(v(q)) .
$$

As $x(\cdot)$ is monotone weakly increasing, then $y(\cdot)$ is monotone weakly decreasing.

Figure 2: A revenue curve in value space.

Definition 3. The revenue curve of a single-dimensional agent specified by $R(v)=v \cdot[1-F(v)]$.
Note: This is only the revenue that can be achieved by posting a single take-it-or-leave-it price. This does not capture the expected revenue of any given mechanism.

Definition 4. The revenue curve of a single-dimensional agent specified by inverse demand curve $v(\cdot)$:

Claim 2. Any allocation rule $y(\cdot)$ can be expressed as a distribution of posted prices. Proof.

Claim 3. Any DSIC allocation rule $x(\cdot)$ can be expressed as a distribution of posted prices.

Figure 3: (a) An allocation rule for a take-it-or-leave-it price of $\$ 3$. (b) An allocation rule for a take-it-or-leave-it price of $\$ 6$. (c) An allocation that can be written $x(v)=0$ for $v<3, x(v)=\frac{1}{3}$ for $v \in[3,6)$, and $x(v)=1$ for $v \geq 6$. Alternatively, a randomized take-it-or-leave-it price that is $\$ 3$ with probability $\frac{1}{3}$ and $\$ 6$ with probability $\frac{2}{3}$, that is, $\$ 5=\frac{1}{3} \cdot 3+\frac{2}{3} \cdot 6$ in expectation. (d) The revenue curve in value space, including ironed intervals where convex combinations of prices can attain higher revenue than deterministic prices.

Claim 4. A distribution F is regular if and only if its corresponding revenue curve is concave.
Observe that $P^{\prime}(q)=\varphi(v(q))$:

$$
P^{\prime}(q)=\frac{d}{d q}(q \cdot v(q))=v(q)+q v^{\prime}(q)=v-\frac{1-F(v)}{f(v)}=\varphi(v(q)) .
$$

Thus $\Phi(q)=\int_{0}^{q} \varphi(\hat{q}) d \hat{q}=P(q)$.
To summarize: a distribution F is regular if and only if:

- its corresponding revenue curve in quantile space is concave.
- $\varphi(q)$ is strictly increasing.
- $f(v) \varphi(v)$ is strictly increasing. (Why?)

Definition 5. The ironing procedure for (non-monotone) virtual value function φ (in quantile space) is:
(i) Define the cumulative virtual value function as
(ii) Define ironed cumulative virtual value function
(iii) Define the ironed virtual value function as

Summary: Take the concave hull of the revenue curve in quantile space. Its derivative forms the ironed virtual values. (The derivatives of the original curve are the original virtual values.)

Figure 4: The bimodal agent's (ironed) revenue curve and virtual values in quantile space.

Theorem 1. For any monotone allocation rule $y(\cdot)$ and any virtual value function $\varphi(\cdot)$, the expected virtual welfare of an agent is upper-bounded by her expected ironed virtual surplus, i.e.,

$$
\mathbb{E}[\varphi(q) y(q)] \leq \mathbb{E}[\bar{\varphi}(q) y(q)] .
$$

Furthermore, this inequality holds with equality if the allocation rule y satisfies $y^{\prime}(q)=0$ for all q where $\bar{\Phi}(q)>\Phi(q)$.

How do we modify this statement for value space?
Proof.

Claim 5. The expected revenue on the ironed revenue curve is attainable with a DSIC mechanism.
Example: How would you obtain the ironed revenue at $\$ 5$ instead of just $R(5)$?

Note: Recall that the expected revenue of any mechanism, not just a posted price, can be expressed by its virtual welfare. (We have now shown that you could decompose it into a distribution of posted prices and thus express the revenue that way, too, actually.)

What's the final mechanism?

For any ironed interval $[a, b]$, examine $\bar{\varphi}(v)$ for $v \in[a, b]$. Draw conclusions about $\bar{\varphi}(v)$ and $x(v)$. $P(q(v))$ is a straight line (linear) there, so $\bar{\varphi}(q(v))$ will be?

What does this imply for ironed-virtual-welfare-maximizing allocation in $[a, b]$?

Multiple Bidders

Imagine we have three bidders competing in a revenue-optimal auction for a single item. They are as follows:

- Bidder 1 is uniform. $F_{1}(v)=\frac{v-1}{H-1}$ on $[1, H]$.
- Bidder 2 is exponential. $F_{2}(v)=1-e^{-x}$ for $v \in(1, \infty)$.
- Bidder 2 is exponential. $F_{3}(v)=1-e^{-2 x}$ for $v \in(1, \infty)$.

What does the optimal mechanism look like?

Definition 6. A reserve price r is a minimum price below which no buyer may be allocated the item. There may also be personalized reserve prices r_{i} where if $v_{i}<r_{i}$ then v_{i} will not be allocated to. Bidders above their reserves participate in the auction.

