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Single-Parameter Optimal Revenue (continued)

Virtual Welfare Recap

• Maximize welfare (
∑

i vixi): Always give the bidder the item, always give it away for free!

• Maximize revenue: Post a price that maximizes Rev = maxr r · [1− F (r)].

Using only the revelation principle and the payment identity pi(bi,b−i) = bi·xi(bi,b−i)−
∫ bi
0 xi(z,b−i) dz,

we proved the following:

Revenue = Ev∼F[
∑
i

pi(v)] = Ev∼F[
∑
i

ϕi(vi)xi(v)] = Virtual Welfare

where

ϕi(vi) = vi −
[1− Fi(vi)]

fi(vi)
.

Then similarly to welfare, just give the item to the bidder with the highest (non-negative) virtual
value! But this doesn’t work when ϕ(·) isn’t monotone, because then x(·) wouldn’t be.

Definition 1. A distribution F is regular if the corresponding virtual valuation function ϕ(v) =

v − 1−F (v)
f(v) is strictly increasing.

Claim 1. A virtual welfare maximizing allocation x is monotone if and only if the virtual value
functions are regular.

Figure 1: Virtual value functions ϕ(v) = v − 1−F (v)
f(v) for the uniform and bimodal agent examples.



Quantile Space and Ironing

In value space:

• an agent has value v.

• the fraction of the distribution with value above v is 1− F (v).

• the revenue from posting a “take-it-or-leave-it” price of v is v[1− F (v)].

In quantile space: q = 1− F (v).

• an agent has value v.

• the fraction of the distribution with value above v is q(v) = 1− F (q).

• the revenue from posting a “take-it-or-leave-it” price of v(q) = F−1(1− v) is v(q) · q.

Example: Consider a distribution that is U [$0, $10]. Then the quantile 0.1 corresponds to $9, where
10% of the population might have a higher value. We let v(q) denote the corresponding value, so
v(0.1) is $9.

Definition 2. The quantile of a single-dimensional agent with value v ∼ F is the measure with
respect to F of stronger values, i.e., q = 1 − F (v); the inverse demand curve maps an agent’s
quantile to her value, i.e., v(q) = F−1(1− q).

Quantile Distribution: Quantiles are particularly useful because we can draw an agent from
any distribution by drawing a quantile q ∼ U [0, 1]. That is, for any q̂ and any distribution F ,
PrF [q ≤ q̂] = q̂. In English: the probability that an agent has a value in the top 0.3 of the distri-
bution is 0.3.

Note: For everything we do today, we could stay in value space, (and sometimes we’ll compare),
but we’d have to normalize by the distribution using f(v), which makes everything a bit messier
and a bit trickier.

Example: For the example of a uniform agent where F (z) = z, the inverse demand curve is
v(q) = 1− q.

For an allocation rule x(·) in value space, we define an allocation rule in quantile space y(·):

y(q) = x(v(q)).

As x(·) is monotone weakly increasing, then y(·) is monotone weakly decreasing.

Definition 3. The revenue curve of a single-dimensional agent specified by R(v) = v · [1− F (v)].

Note: This is only the revenue that can be achieved by posting a single take-it-or-leave-it price.
This does not capture the expected revenue of any given mechanism.

Definition 4. The revenue curve of a single-dimensional linear agent specified by inverse demand
curve v(·) is P (q) = q · v(q) for any q ∈ [0, 1].

Assuming the lower-end of the support of F is 0 and the upper end is some finite vmax, then
P (0) = 0 and P (1) = 0.



Figure 2: A revenue curve in value space.

Claim 2. Any allocation rule y(·) can be expressed as a distribution of posted prices.

Proof. Given the allocation rule y(·), consider the distribution Gy(z) := 1 − y(z). We show that
the mechanism that randomly draws a quantile q̂ ∼ Gy from the distribution Gy and posts the
price v(q̂) is equivalent.

For a random price v(q̂) and fixed quantile q, then

Prq̂∼Gy [v(q̂) < v(q)] = Prq̂∼Gy [q̂ > q] = 1−Gy(q) = y(q).

Claim 3. Any DSIC allocation rule x(·) can be expressed as a distribution of posted prices.

See Figure for an example. In general, the PDF of the distribution of randomized prices is x′(v)
for a price of v to achieve an allocation rule of v..

Claim 4. A distribution F is regular if and only if its corresponding revenue curve is concave.

Observe that P ′(q) = ϕ(v(q)):

P ′(q) =
d

dq
(q · v(q)) = v(q) + qv′(q) = v − 1− F (v)

f(v)
= ϕ(v(q)).

Thus Φ(q) =
∫ q
0 ϕ(q̂) dq̂ = P (q).

To summarize: a distribution F is regular if and only if:

• its corresponding revenue curve in quantile space is concave.

• ϕ(q) is strictly increasing.

• f(v)ϕ(v) is strictly increasing. (Why?)

Claim 5. A distribution F is regular if and only if its corresponding revenue curve is concave.

Observe that P ′(q) = ϕ(v(q)):

P ′(q) =
d

dq
(q · v(q)) = v(q) + qv′(q) = v − 1− F (v)

f(v)
= ϕ(v(q)).

Thus Φ(q) =
∫ q
0 ϕ(q̂) dq̂ = P (q).



(a) Price of $3. (b) Price of $6.

(c) Randomized price with expectation $5. (d) Ironed revenue curve.

Figure 3: (a) An allocation rule for a take-it-or-leave-it price of $3. (b) An allocation rule for a
take-it-or-leave-it price of $6. (c) An allocation that can be written x(v) = 0 for v < 3, x(v) = 1

3
for v ∈ [3, 6), and x(v) = 1 for v ≥ 6 . Alternatively, a randomized take-it-or-leave-it price that is
$3 with probability 1

3 and $6 with probability 2
3 , that is, $5 = 1

3 · 3 + 2
3 · 6 in expectation. (d) The

revenue curve in value space, including ironed intervals where convex combinations of prices can
attain higher revenue than deterministic prices.

Definition 5. The ironing procedure for (non-monotone) virtual value function ϕ (in quantile
space) is:

(i) Define the cumulative virtual value function as Φ(q̂) =
∫ q̂
0 ϕ(q) dq.

(ii) Define ironed cumulative virtual value function as Φ̄(·) as the concave hull of Φ(·).

(iii) Define the ironed virtual value function as ϕ̄(q) = d
dq Φ̄(q) = Φ̄′(q).

Summary: Take the concave hull of the revenue curve in quantile space. Its derivative forms the
ironed virtual values. (The derivatives of the original curve are the original virtual values.)

Theorem 1. For any monotone allocation rule y(·) and any virtual value function ϕ(·), the expected
virtual surplus of an agent is upper-bounded by her expected ironed virtual surplus, i.e.,

E[ϕ(q)y(q)] ≤ E[ϕ̄(q)y(q)].

Furthermore, this inequality holds with equality if the allocation rule y satisfies y′(q) = 0 for all q
where Φ̄(q) > Φ(q).



Figure 4: The bimodal agent’s (ironed) revenue curve and virtual values in quantile space.

Proof. Recall integration by parts:∫ b

a
u(x)v′(x) dx = [u(x)v(x)]ba −

∫ b

a
u′(x)v(x) dx.

By integration by parts for any virtual value function ϕ(·) and monotone allocation rule y(·),

E[ϕ(q)y(q)] = E[−y′(q)Φ(q)].

Step by step, that is,

E[ϕ(q)y(q)] =

∫ 1

0
ϕ(q)y(q) dq q ∼ U [0, 1]

= Φ(1)y(1)− Φ(0)y(0)−
∫ 1

0
y′(q)Φ(q) dq

= 0 + E[−y′(q)Φ(q)].

because Φ(1) = 1 · v(1) = 0 as v(1) = 0, and Φ(0) = 0 · v(0) = 0. Notice that the weakly decreasing
monotonicity of the allocation rule y(·) implies the non-negativity of −y′(q). With the left-hand side
of equation as the expected virtual surplus, it is clear that a higher cumulative virtual value implies
no lower expected virtual surplus. By definition of Φ̄(·) as the concave hull of Φ(·), Φ(q) ≤ Φ̄(q)
and, therefore, for any monotone allocation rule, in expectation, the ironed virtual surplus is at
least the virtual surplus, i.e., E[−y(q)Φ(q)] ≤ E[−y(q)Φ̄(q)].

To see the equality under the assumption that y′(q) = 0 for all q where Φ̄(q) > Φ(q), rewrite
the difference between the ironed virtual surplus and the virtual surplus via equation as,

E[ϕ̄(q)y(q)]− E[ϕ(q)y(q)] = E[−y′(q)(Φ̄(q)− Φ(q))].

The assumption on y′ implies the term inside the expectation on the right-hand side is zero ∀q.



Modifying this statement for value space:

Theorem 2. For any monotone allocation rule x(·) and any virtual value function ϕ(·), the expected
virtual welfare of an agent is upper-bounded by their expected ironed virtual welfare, i.e.,

E[ϕ(v)x(v)] ≤ E[ϕ̄(v)x(v)].

Furthermore, this inequality holds with equality if the allocation rule x satisfies x′(v) = 0 for all v
where Φ̄(v) > Φ(v).

Claim 6. The expected revenue on the ironed revenue curve is attainable with a DSIC mechanism.

Example: How would you obtain the ironed revenue at $5 instead of just R(5)?

For p ∈ [p, p] where R(p) > R(p), if p = αp+ (1−α)p, we achieve R(p) by randomizing the prices p
and p with probabilities α and 1−α accordingly to yield αR(p)+(1−α)R(p) on the concave closure.

Note: Recall that the expected revenue of any mechanism, not just a posted price, can be ex-
pressed by its virtual welfare. (We have now shown that you could decompose it into a distribution
of posted prices and thus express the revenue that way, too, actually.)

What’s the final mechanism? Now that ϕ̄i(·) is monotone (for every i), we choose the x(·)
that maximizes Ev[

∑
i ϕi(v)xi(v)], which will thus be monotone. By Theorem 2, this is an upper

bound on the optimal revenue.

For any ironed interval [a, b], examine ϕ̄(v) for v ∈ [a, b]. P (q(v)) is a straight line (linear) there,
so ϕ̄(q(v)) will be constant.

What does this imply for ironed-virtual-welfare-maximizing allocation in [a, b]? It will
be constant on [a, b], and thus its derivative will be zero.

Hence ironed virtual welfare is equal to virtual welfare by Theorem 2, so maximizing one max-
imizes the other.

Multiple Bidders

Imagine we have three bidders competing in a revenue-optimal auction for a single item. They are
as follows:

• Bidder 1 is uniform. F1(v) = v−1
H−1 on [1, H].

• Bidder 2 is exponential. F2(v) = 1− e−v for v ∈ (1,∞).

• Bidder 2 is exponential. F3(v) = 1− e−2v for v ∈ (1,∞).

What does the optimal mechanism look like?

First we calculate their virtual value functions.



• f1(v) = 1
H−1 for v ∈ [1, H]. ϕ1(v) = 2v −H.

• f2(v) = e−v for v ∈ (1,∞). ϕ2(v) = v − 1.

• f3(v) = 2e−2v for v ∈ (1,∞). ϕ3(v) = v − 1
2 .

The bidders have personalized reserve prices (i.e., have positive virtual values with vi above) r1 = H
2 ,

r2 = 1, r3 = 1
2 . Note that based on the support of F2 and F3 that bidder 2 and 3 are always above

their reserve prices.

The optimal mechanism excludes bidder 1 if v1 < r1 = H
2 , and otherwise allocates to the bid-

der with the largest virtual value ϕi(vi). If some ϕj(vj) is the second highest virtual value and
exceeds its reserve price, then bidder i pays a price of ϕ−1i (ϕj(vj)); otherwise, bidder i just pays ri.

Definition 6. A reserve price r is a minimum price below which no buyer may be allocated the
item. There may also be personalized reserve prices ri where if vi < ri then vi will not be allocated
to. Bidders above their reserves participate in the auction.
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