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Additive Review

The Additive Setting: There are m non-identical items and n bidders where each bidder i has
private valuation vij for each item j. Bidder i has

vi(S) :=
∑
j∈S

vij .

The welfare-optimal direct revelation mechanism: just handle each item separately—m Vickrey
auctions!

Ascending implementation: Parallel English Auctions: Maintain a set of interested bidders for
each item, and the auction for item j terminates when there’s only one active bidder remaining,
breaking ties arbitrarily.

Is this DSIC? No! One bidder can “threaten” another by doing something that doesn’t maxi-
mize their own utility, motivating the need for another solution concept.

Definition 1. A strategy profile (σ1, . . . , σn) is an ex post Nash equilibrium (EPNE) if, for every
bidder i and valuation vi ∈ Vi, the strategy σi(vi) is a best-response to every strategy profile
σ−i(v−i) with v−i ∈ V−i.

In comparison, in a dominant-strategy equilibrium (DSE), for every bidder i and valuation vi, the
action σi(vi) is a best response to every action profile a−i of A−i, whether of the form σ−i(v−i) or
not.

Definition 2. A mechanism is ex post incentive compatible (EPIC) if sincere bidding is an ex post
Nash equilibrium in which all bidders always receive nonnegative utility.

Claim 1. For n additive bidders with m heterogenous items, in parallel English auctions, sincere
bidding by all bidders is an ex post Nash equilibrium (up to mε).

Unit Demand

The Unit-Demand Setting: There are m non-identical items and n bidders where each bidder i has
private valuation vij for each item j. Bidder i is unit demand, that is, wants at most one item for
any set S:

vi(S) := max
j∈S

vij .

First, solve the direct-revelation problem. What do we observe about the welfare-maximizing al-
location in the unit-demand setting? Each bidder gets at most one item. Each item is allocated
to one bidder. If an “edge” (i, j) represents bidder i’s value vij for item j, then want to choose



the allocation that gives the maximum-weight bipartite matching. This problem can be solved in
polynomial time!

Refresh yourself on what the VCG mechanism looks like. Then what does the analogous ascending
auction look like?

1. Set a price qj for each item j, initializing each price to 0.

2. Initially all bidders are unassigned.

3. while (TRUE):

(a) Ask each bidder for a favorite item (or ∅) at the prices q + ε, meaning an item j ∈
Di(q + ε) := argmaxk{vik − (qk + ε)}. Treat this as a “bid” for item j.

(b) If no unassigned bidder submits a bid, then halt with the current allocation and prices
q.

(c) Otherwise, pick an arbitrary unassigned bidder i that bid for item j and assigned j to i.

i. If item j was previously assigned to bidder i′, mark i′ as unassigned and increase
the price qj by ε.

So the ascending auction implementation essentially decreases demand (by raising prices) until
supply is equal to demand, where “demand” is equal to a bidder’s favorite item at the given prices.
This is called the Crawford-Knoer (CK) Auction.

Walrasian Equilibria in the Unit-Demand Setting

The Unit-Demand Setting: There are m non-identical items U and n bidders where each bidder i
has private valuation vij for each item j. Bidder i is unit demand, that is, wants at most one item
for any set S:

vi(S) := max
j∈S

vij .

Definition 3. In the unit-demand setting, a Walrasian equilibrium (or “competitive equilibrium”)
is a price vector q ∈ Rm defined on the items and a matching M of the bidders and items such
that:

1. Each bidder i is matched to a favorite item j ∈ argmax{vij − qj}j∈U∪{∅}. (WE1)

Equivalently, q is an envy-free pricing.

2. An item j ∈ U is unsold only if q(j) = 0. (WE2)

We call Di(q) = argmax{vij − qj}j∈U∪{∅} the demand set of i under prices q.

Claim 2 (First Welfare Theorem). In the unit-demand setting, if (q,M) is a Walrasian Equilibrium,
then M is a welfare-maximizing allocation.



This essentially says “markets are efficient,” and there are many “First Welfare Theorems” each
with this flavor. Exercise: Prove this.

What we’ll now see that is the VCG allocation and payment is a WE, and in fact, is a lower
bound on all WE for the unit-demand setting.

Recall the VCG payment in this setting:

pi =
∑
k 6=i

vk(M−i(k))−
∑
k 6=i

vk(M(k))

where M(k) is the item that k is allocated in the welfare-maximizing (maximum-weight) matching,
and M−i is the welfare-maximizing matching without bidder i.

Theorem 1 (VCG Payments Lower Bound WE). In the unit-demand setting, let p denote the
induced item price vector of the truthful-revelation VCG outcome and q a Walrasian price vector.
Then p(j) ≤ q(j) for every item j.

Proof. Let M denote the allocation computed by the VCG mechanism. Let M−i denote a welfare-
maximizing allocation among allocations that leave bidder i unmatched. The pair (q,M) is a WE.
(Why?) For every k 6= i, (WE1) of (q,M) can be used to argue that k prefers M(k) over M−i(k)
at the prices q:

vk(M(k))− q(M(k)) ≥ vk(M−i(k))− q(M−i(k)),

and summing over all k 6= i gives∑
k 6=i

vk(M(k))−
∑
k 6=i

q(M(k))︸ ︷︷ ︸
= Q− q(j) by (WE2)

≥
∑
k 6=i

vk(M−i(k))−
∑
k 6=i

q(M−i(k))︸ ︷︷ ︸
≤Q

where Q =
∑

j′ q(j
′), because

∑
k 6=i q(M(k)) sums over all of the items with non-zero q-prices

except for the item matches to i (which we call j). Rearranging gives

q(j) ≥
∑
k 6=i

vk(M−i(k))−
∑
k 6=i

vk(M(k)) = p(j),

where the equation follows from the definition of prices from the VCG mechanism.

Theorem 2 (VCG Outcome is a WE). In the unit-demand setting, let M and p denote the
allocation and induced item price vector of the truthful-revelation VCG outcome. Then (p,M) is a
WE.

Then in unit-demand settings, a WE is guaranteed to exists, there is a “smallest” WE, and the
VCG outcome is precisely this smallest WE. We leave the proof as an exercise, but you may want
to use the following lemma.

Lemma 1. In the unit-demand setting, let M and p denote the allocation and induced item price
vector of the truthful-revelation VCG outcome. For a good j ∈ U , let M+j denote a welfare-
maximizing allocation after adding a second copy j′ of the good j (with vij = vij′ for every bidder
i). Then

p(j) =
n∑

k=1

vk(M+j)−
n∑

k=1

vk(M).



The Crawford-Knoer Auction

1. Set a price qj for each item j, initializing each price to 0.

2. Initially all bidders are unassigned.

3. while (TRUE):

(a) Ask each bidder for a favorite item (or ∅) at the prices q + ε, meaning an item j ∈
Di(q + ε) := argmaxk{vik − (qk + ε)}. Treat this as a “bid” for item j.

(b) If no unassigned bidder submits a bid, then halt with the current allocation and prices
q.

(c) Otherwise, pick an arbitrary unassigned bidder i that bid for item j and assign j to i.

i. If item j was previously assigned to bidder i′, mark i′ as unassigned and increase
the price qj by ε.

Observations:

• The price of item j starts at 0, and it takes someone bidding on item j (and each subsequent
out-bid) to increase it by ε.

• After some bidder i bids for item j, they remain matched until j is outbid by another bidder—i
cannot let go or stop bidding on j.

• Once j is bid on, it is forever more assigned to a bidder.

• Assuming sincere bidding, bidders i always honestly report an item from Di(q+ ε) (or report
that there none), then the CK auction will terminate in at most mvmax/ε iterations, vmax/ε
per item, where vmax = maxi,j vij .

Analysis of the CK Auction

Theorem 3. Up to ε terms, the outcome of the CK auction under sincere bidding is the VCG
outcome under truthful revelation.

Lemma 2. If all bidders bid sincerely, then the CK auction terminates at an ε-WE (q,M).

Corollary 4. If all bidders bid sincerely, then the CK auction terminates with an allocation that
has surplus within mε of the maximum possible.

Note: Consistent vs. sincere bidding—i’s possible actions:

1. Answer all queries honestly (with respect to vi).

2. For some valuation v′i 6= vi, answer all queries as if its valuation was v′i.

3. Answer queries in an arbitrary, possibly inconsistent, way. valuation.

(1) and (2) are consistent with respect to some valuation.



Proposition 5. Let A be an iterative auction such that the sincere bidding outcome of A is the
same as the truthful revelation outcome of the VCG mechanism. For every bidder i and valuation
profile v, if every player other than i bids sincerely, then sincere bidding is bidder i’s best response
among consistent actions.

Theorem 6. The CK auction is EPIC (up to error 2ε ·min{m,n}).

See Tim Roughgarden’s notes for an expansion on this section.

The Gross Substitutes Condition

A General Valuation Model

The most general welfare-maximization problem we’ll consider in this course is the following.

• There is a set U of m non-identical goods.

• Each bidder i = 1, 2, 3, . . . , n has a private valuation vi(S) for each bundle S ⊆ U of goods
that it might receive.

– Assumption #1: vi(∅) = 0.

– Assumption #2: “free disposal,” meaning the monotonicity condition that vi(S) ≤ vi(T )
whenever S ⊆ T .

Generalized Walrasian Equilibrium: A Walrasian equilibrium (WE) is a nonnegative price
vector q on the items and an allocation (S1, · · · , Sn) such that:

(WE1) Each bidder i is matched to a favorite bundle

S ∈ argmax{vi(S)−
∑
j∈S

q(j)}S⊆U = Di(q),

with the empty set S = ∅ is allowed.

(WE2) An item j ∈ U is unsold only if q(j) = 0.

The Kelso-Crawford Auction

An extension of the CK auction where bidders can bid on more than one item at once, and can
also bid for new items even if some items are already assigned to them. It remains impossible to
withdraw from a bid.

Kelso-Crawford (KC) Auction:

1. Initialize the price of every item j to q(j) = 0.

2. For every bidder i, initialize the set Si of items assigned to i to ∅.

3. while (TRUE):



(a) Ask each bidder for their favorite subset of items not assigned to them, given the items
they already have and the current prices—an arbitrary set Ti in

argmaxT⊆U\Si
{vi(Si ∪ T )− qε(Si ∪ T )},

where
qε(Si ∪ T ) =

∑
j∈Si

q(j) +
∑
j∈T

(q(j) + ε).

(b) If Ti = ∅ for all bidders i, then halt with the current allocation (S1, . . . , Sn) and prices
q.

(c) Otherwise, pick an arbitrary bidder i with Ti 6= ∅:
i. Si ← Si ∪ Ti;

ii. for all k 6= i, Sk ← Sk \ Ti;
iii. for j ∈ Ti; q(j)← q(j) + ε.

In the special case of unit-demand bidders, the KC auction is identical to the CK auction.

For bidders with general valuations, bidding sincerely in the KC auction can be a disaster.

Example: Suppose U = {L,R}—a left and right shoe. Bidder 1 is “single-minded” for the
pair of shoes, that is, v1({L,R}) = 3 and otherwise v1 = 0. Bidder 2 is unit-demand, only wanting
a single shoe for an art project, with v2(∅) = 0 and otherwise v2 = 2.

What happens in the KC auction? Bidder 1 will bid on both shoes, increasing by prices by ε,
and bidder 2 will bid on the cheaper or otherwise an arbitrary shoe, taking turns incrementing the
L and R prices by ε. This will continue until the prices for both shoes are 1.5, at which point
bidder 1 will stop bidding as the pair costs too much. However, bidder 1 is stuck buying at least
one shoe, since they cannot relinquish items and bidder 2 will not buy both. Then bidder 1 can
either get -1.5 utility for a useless single shoe, or outbid bidder 2 for the second shoe when each
shoe is priced at 2, for a total of 4, to get less negative utility of -1, which is preferable.

Note that a left and right shoe are complements—they have more value as a whole than the
sum of their parts. This is typically a difficult setting to study, as opposed to substitutes, where
the whole has at most the value of the sum of its parts.

The Gross Substitutes Condition

Definition 4. A valuation vi defined on item set U satisfies the gross substitutes (GS) condition if
and only if the following condition holds. For every price vector p, every set S ∈ Di(p), and every
price vector q ≥ p, there is a set T ⊆ U with

(S \A) ∪ T ∈ Di(q),

where A = {j : q(j) > p(j)} is the set of items whose prices have increased (in q relative to p).



Theorem 7. If all bidders have gross substitutes valuations and bid sincerely, then the Kelso-
Crawford auction terminates at a mε-Walrasian equilibrium.

Proof. Unsold items have price 0 because bidders only relinquish an item when outbid by another
bidder, so an item goes unsold only if no bidder even bid on it, in which case its final price is 0.

With GS valuations, we claim the KC auction maintains the following invariant:

for every bidder i, Si is contained in a set of Di(q
ε), where qε(j) equals q(j) for j ∈ Si

and (q(j) + ε) for j 6∈ Si.

That is, no bidder ever wants to withdraw its bids for the items it possesses. The base case,
where Si = ∅ for each i, is trivial.

For the inductive step, consider bidder i. If i is chosen to bid in this iteration, then the
inductive hypothesis ensure that there is a set Ti ⊆ U \ Si such that Si ∪ Ti ∈ Di(q

ε). Thus, after
this iteration i will possess a set in Di(q

ε). Otherwise, let Ai be the last set of items that i bid on.
By the inductive hypothesis, Bi was a preferred bundle at the prices at the time. In the subsequent
iterations, including the current one, the items reassigned from i to other bidders have had their
price increased, while the prices of the items in Si have stayed the same. By the definition of the
GS condition, Si belongs to a set of Di(q

ε), completing the inductive step.
By the invariant and the KC auction’s stopping rule, at termination Si ∈ Di(q

ε) for every bidder
i. Since the final prices q differ from qε by at most ε on each good, the KC auction terminates
with an mε-WE.

Taking the limit as ε→ 0 gives the following remarkable consequence of the KC auction.

Corollary 8. If valuations v1, · · · , vn satisfy the gross substitutes condition, then there exists a
Walrasian equilibrium.

Proof Sketch. Consider a sequence of 1
N -WE for N = 1, 2, 3, . . ., which exists by Theorem 4.2. Some

allocation (S1, · · · , Sn) repeats infinitely often. The corresponding price vectors lies in a compact
set, bounded by the valuations, so they have an accumulation point. This point, together with
(S1, · · · , Sn), is a Walrasian equilibrium.

Thus far we’ve been taking for granted the existence of Walrasian equilibrium. In many cases,
however, WE do not exist.

Example: In our same left-and-right-shoe example, no WE exists. By the First Welfare The-
orem, a WE is welfare-maximizing, so in any WE, bidder 1 must be allocated both shoes. In order
for this bundle to be in bidder 1’s demand set, then the price of the shoes must be at most 3
(otherwise the bidder would prefer the empty set). However, this forces one of the shoes to be
priced at less than 1.5, which is less than 2, so bidder 2 would have that shoe in their demand set
and not be allocated it, meaning this is not a WE.

More generally, the gross substitutes condition is in some sense the frontier for the guaranteed
existence of WE.

Theorem 9 (Gul-Stacchetti). If vi is a valuation that does not satisfy the GS condition, there are
unit-demand (and hence GS) valuations v−i such that v admits no Walrasian equilibrium.



An Impossibility Result

Can we get the VCG outcome with GS valuations using an ascending auction? Perhaps surprisingly,
the answer is no.

Theorem 10 (Gul-Stacchetti). There is no ascending auction for which sincere bidding yields the
VCG outcome for every profile of gross substitutes valuations.
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