Recap/Big Picture

DS 574 LECTURE 8

Econ \rightarrow CS

Input:

 Data reported byObjective: Maximize buyer's value

 arguments

Output:

 -who gets what -who pays (gets paid) what15

Use game theory to reason about incentives within the algorithm so that we can guarantee (approximate) optimality.

Maximize Social Welfare: $2^{\text {nd }}$ Price

Objective: Maximize value of the allocation

Dominant Strategy Incentive Compatibility

More utility for bidding actual value:

$$
v_{i} x_{i}\left(v_{i}, \boldsymbol{b}_{-i}\right)-p_{i}\left(v_{i}, \boldsymbol{b}_{-i}\right) \geq v_{i} x_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)-p_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right) \quad \forall i, v_{i}, b_{i}, \boldsymbol{b}_{-i}
$$

1) The allocation rule must be monotone, or this can't hold. implementable
2) DSIC payments are completely determined by the allocation rule:

$$
p_{i}\left(v_{i}, \boldsymbol{b}_{-i}\right)=\int_{0}^{v_{i}} z x_{i}^{\prime}\left(z, \boldsymbol{b}_{-i}\right) d z
$$

$$
=\underline{v_{i} x_{i}\left(v_{i}, \boldsymbol{b}_{-i}\right)}-\underline{\int_{0}^{v_{i}} x_{i}\left(z, \boldsymbol{b}_{-i}\right) d z}
$$

value v_{i}
utility $v_{i} x_{i}(\boldsymbol{b})-p_{i}(\boldsymbol{b})$
bid b_{i}

$$
\Rightarrow b_{i}=v_{i} \forall i
$$

Maximize Social Welfare: $1^{\text {st }}$ Price

Objective: Maximize value of the allocation

The Bayesian Setting: Stages

Each bidder i 's value v_{i} is drawn from a distribution with $\operatorname{CDF} F_{i}$ and $\operatorname{pdf} f_{i}$

- F_{1}, \ldots, F_{n} are common knowledge to all bidders and the auctioneer
- $F_{i}(x)=\operatorname{Pr}\left[v_{i} \leq x\right]$
- $f_{i}(x)=\frac{d}{d x} F_{i}(x)$

interim: i knows v_{i}, Bayesian updates given this bidders submit bids
ex post: outcome announced. know v_{1}, \ldots, v_{n}
value v_{i}
utility $v_{i} x_{i}(\boldsymbol{b})-p_{i}(\boldsymbol{b})$ needed:
bid b_{i}
- for bidders to reason about other bidders' behavior (BNE)
- for auctioneer to reason about objective in expectation

The Bayesian Setting: Incentive Compatibility

Each bidder i 's value v_{i} is drawn from a known distribution F_{i}

NOT $\forall \boldsymbol{b}_{-i}$ but in $\mathbb{E}_{\boldsymbol{v}_{-i}}!$

$$
v_{i} \widehat{x_{i}}\left(v_{i}\right)-\widehat{p_{i}}\left(v_{i}\right) \geq v_{i} \widehat{x_{i}}\left(b_{i}\right)-\widehat{p_{i}}\left(b_{i}\right) \quad \forall i, v_{i}, b_{i}
$$

interim: i knows v_{i}, Bayesian updates given this bidders submit bids

$$
\widehat{x}_{i}\left(b_{i}\right)=\mathbb{E}_{\boldsymbol{v}_{-i}}\left[x_{i}\left(b_{i}, \boldsymbol{v}_{-i}\right)\right] \quad \widehat{p_{i}}\left(b_{i}\right)=\mathbb{E}_{\boldsymbol{v}_{-i}}\left[p_{i}\left(b_{i}, \boldsymbol{v}_{-i}\right)\right]
$$

value v_{i}
utility $v_{i} x_{i}(\boldsymbol{b})-p_{i}(\boldsymbol{b})$ bid b_{i}
ex post: outcome announced. know v_{1}, \ldots, v_{n}

$$
x_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right) \quad p_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)
$$

$$
\text { DSIC: } \quad v_{i} x_{i}\left(v_{i}, \boldsymbol{b}_{-i}\right)-p_{i}\left(v_{i}, \boldsymbol{b}_{-i}\right) \geq v_{i} x_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)-p_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right) \quad \forall i, v_{i}, b_{i}, \boldsymbol{b}_{-i}
$$

Nash Equilibrium vs. Incentive-Compatibility

A mechanism is [concept] Incentive-Compatible if in the mechanism, truthful reporting is a [concept] Nash Equilibrium. (i.e. [concept] \in Dominant Strategy, Bayes-Nash, Ex Post*)
*sincere bidding may be required instead of truthful
BNE: Best-response strategies $\boldsymbol{\sigma}$ form a Bayes-Nash Equilibrium (BNE) in (x, p) when

$$
\begin{aligned}
& \mathbb{E}_{\boldsymbol{v}_{-i}}\left[v_{i} x_{i}\left(\sigma_{i}\left(v_{i}\right), \boldsymbol{\sigma}_{-i}\left(\boldsymbol{v}_{-i}\right)\right)-p_{i}\left(\sigma_{i}\left(v_{i}\right), \boldsymbol{\sigma}_{-i}\left(\boldsymbol{v}_{-i}\right)\right)\right] \geq \\
& \mathbb{E}_{\boldsymbol{v}_{-i}}\left[v_{i} x_{i}\left(b_{i}, \boldsymbol{\sigma}_{-i}\left(\boldsymbol{v}_{-i}\right)\right)-p_{i}\left(b_{i}, \boldsymbol{\sigma}_{-i}\left(\boldsymbol{v}_{-i}\right)\right)\right] \quad \forall i, v_{i}, b_{i}
\end{aligned}
$$

BIC: A mechanism (x, p) is Bayesian Incentive-Compatible (BIC) when

$$
\left.\mathbb{E}_{\boldsymbol{v}_{-i}}\left[v_{i} x_{i}\left(v_{i}, \boldsymbol{v}_{-i}\right)-p_{i}\left(v_{i}, \boldsymbol{v}_{-i}\right)\right] \geq \mathbb{E}_{\boldsymbol{v}_{-i}}\left[v_{i} x_{i}\left(b_{i}, \boldsymbol{v}_{-i}\right)-p_{i}\left(b_{i}, \boldsymbol{v}_{-i}\right)\right)\right] \quad \forall i, v_{i}, b_{i}
$$

Revelation Principle + Revenue Equivalence

Revelation Principle: It is without loss to focus on [DS/B/EP]IC mechanisms.

Revenue Equivalence: Mechs w/ the same outcome have the same $\mathbb{E}[R e v]$.

Maximizing Revenue

How can we max revenue? Can't just charge $v_{i}-$ not IC. Still need the payment identity.

Only DSIC if $\varphi_{i}\left(v_{i}\right)$ is monotone

For virtual
value functions

$$
\varphi_{i}\left(v_{i}\right)=\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}
$$

How else can we express revenue?

Any allocation rule can be expressed as a distribution of prices.

Menu
$=$
(1, $\frac{1}{3} \$ 3+\frac{2}{3} \$ 6$)
($\frac{1}{3}, \frac{1}{3} \$ 3$)
$(0,0)$

Any allocation is a distribution over prices

What is our revenue for a price p ?

Single-bidder revenue curve $R(p)=p \cdot \operatorname{Pr}_{v}[v \geq p]=p \cdot[1-F(p)]$
Moving to quantile space:

$$
q=1-F(v) \quad v(q)=F^{-1}(1-q) \quad q \sim U[0,1]
$$

Single-bidder revenue curve in quantile space

$$
P(q)=v(q) \cdot q
$$

Happily,

$$
\frac{d}{d q} P(q)=\varphi(v(q))
$$

We define

$$
\frac{d}{d q} \bar{P}(q)=\bar{\varphi}(v(q)) \quad \text { where is } \bar{P}(\cdot) \text { the concave closure of } P(\cdot) \text {. }
$$

Maximizing Revenue

Multiparameter Social Welfare: VCG is DSIC

$$
x:=\operatorname{argmax} \sum_{j} v_{j}\left(x_{j}\left(b_{i}, \boldsymbol{b}_{-i}\right)\right)
$$

More utility for bidding actual value:

$$
v_{i}\left(x_{i}\left(v_{i}, \boldsymbol{b}_{-i}\right)\right)-p_{i}\left(v_{i}, \boldsymbol{b}_{-i}\right) \geq v_{i}\left(x_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)\right)-p_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right) \quad \forall i, v_{i}, b_{i}, \boldsymbol{b}_{-i}
$$

$$
i \text { wants to max wrt }\left(v_{i}, \boldsymbol{b}_{-i}\right)
$$

$$
\begin{gathered}
p_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)= \\
\sum_{j \neq i} b_{j}\left(x_{j}\left(0, \boldsymbol{b}_{-i}\right)\right)-\frac{\sum_{j \neq i} b_{j}\left(x_{j}\left(b_{i}, \boldsymbol{b}_{-i}\right)\right)}{\text { curr welf w/o } i},
\end{gathered}
$$

utility $v_{i} x_{i}(\boldsymbol{b})-p_{i}(\boldsymbol{b})$
bid b_{i}
unrelated to i 's bid $\quad x$ is defined to max wrt b

Ascending Auctions

Walrasian Equilibria + Gross Substitutes

Crawford-Knoer

Walrasian Equilibrium:
For prices \boldsymbol{q}

- Everyone gets an item that maximizes their utility (in their demand set).
- $q_{j}=0 \Leftrightarrow j$ is unsold

$$
\square \square \square \square
$$

Bid on an item in your demand set that maximizes your utility under the current $+\varepsilon$ prices.

$$
\arg \max v_{j}-q_{j}
$$

- Prices increase only when bid on.
- Never release items. (Only overbid!)

For Gross Substitutes (whenever your utility-maximizing bundle is the sameprice items you still have plus some other items), this terminates in a WE.

