Recap/Big Picture

DS 574 LECTURE 8

Maximize Social Welfare: 2nd Price

Objective: Maximize value of the allocation

Dominant Strategy Incentive Compatibility

More utility for bidding actual value:

$$v_{i} x_{i}(v_{i}, \boldsymbol{b}_{-i}) - \left[p_{i}(v_{i}, \boldsymbol{b}_{-i})\right] \ge v_{i} x_{i}(b_{i}, \boldsymbol{b}_{-i}) - p_{i}(b_{i}, \boldsymbol{b}_{-i}) \quad \forall i, v_{i}, b_{i}, \boldsymbol{b}_{-i}$$

1) The allocation rule must be **monotone**, or this can't hold. | implementable

Myerson's Lemma

2) DSIC payments are completely determined by the allocation rule:

$$p_i(\boldsymbol{v_i}, \boldsymbol{b}_{-i}) = \int_0^{\boldsymbol{v_i}} z \, x_i'(z, \boldsymbol{b}_{-i}) dz$$

$$\boxed{p_i(\boldsymbol{v_i}, \boldsymbol{b}_{-i})} = \int_0^{\boldsymbol{v_i}} z \, x_i'(z, \boldsymbol{b}_{-i}) dz \qquad = \underline{\boldsymbol{v_i}} \, x_i(\boldsymbol{v_i}, \boldsymbol{b}_{-i}) - \int_0^{\boldsymbol{v_i}} x_i(z, \boldsymbol{b}_{-i}) dz$$

value v_i utility $v_i x_i(\boldsymbol{b}) - p_i(\boldsymbol{b})$ $bid b_i$

$$\Rightarrow b_i = v_i \ \forall i$$

Maximize Social Welfare: 1st Price

Objective: Maximize value of the allocation

The Bayesian Setting: Stages

Each bidder i's value v_i is drawn from a distribution with CDF F_i and pdf f_i

- F_1, \dots, F_n are common knowledge to all bidders and the auctioneer
- $F_i(x) = \Pr[v_i \le x]$
- $f_i(x) = \frac{d}{dx}F_i(x)$

ex ante: no values are known. mechanism announced.

interim: i knows v_i , Bayesian updates given this bidders submit bids

ex post: outcome announced. know v_1, \dots, v_n

value v_i utility $v_i x_i(\boldsymbol{b}) - p_i(\boldsymbol{b})$ needed: bid b_i

- for bidders to reason about other bidders' behavior (BNE)
- for auctioneer to reason about objective in expectation

The Bayesian Setting: Incentive Compatibility

Each bidder i's value v_i is drawn from a known distribution F_i

BIC:

$$\begin{split} & \mathbb{E}_{v_{-i}}[v_i \ x_i(v_i, v_{-i}) - p_i(v_i, v_{-i})] \geq \\ & \mathbb{E}_{v_{-i}}[v_i \ x_i(b_i, v_{-i}) - p_i(b_i, v_{-i}))] \quad \forall i, v_i, b_i \end{split}$$

NOT $\forall \boldsymbol{b}_{-i}$ but in $\mathbb{E}_{\boldsymbol{v}_{-i}}$!

$$v_i \widehat{x_i}(v_i) - \widehat{p_i}(v_i) \ge v_i \widehat{x_i}(b_i) - \widehat{p_i}(b_i) \quad \forall i, v_i, b_i$$

interim: i knows v_i , Bayesian updates given this bidders submit bids

$$\widehat{x}_i(b_i) = \mathbb{E}_{v_{-i}}[x_i(b_i, v_{-i})]$$

$$\widehat{p}_i(\mathbf{b}_i) = \mathbb{E}_{\mathbf{v}_{-i}}[p_i(\mathbf{b}_i, \mathbf{v}_{-i})]$$

value v_i utility $v_i x_i(\boldsymbol{b}) - p_i(\boldsymbol{b})$ bid b_i

ex post: outcome announced. know v_1, \dots, v_n

$$x_i(b_i, \boldsymbol{b}_{-i})$$

$$p_i(\boldsymbol{b_i}, \boldsymbol{b_{-i}})$$

DSIC:
$$v_i x_i$$

$$v_i x_i(v_i, b_{-i}) - p_i(v_i, b_{-i}) \ge v_i x_i(b_i, b_{-i}) - p_i(b_i, b_{-i}) \quad \forall i, v_i, b_i, b_{-i}$$

$$\forall i, \mathbf{v_i}, \mathbf{b_i}, \mathbf{b}_{-i}$$

Nash Equilibrium vs. Incentive-Compatibility

A mechanism is [concept] Incentive-Compatible if in the mechanism, truthful reporting is a [concept] Nash Equilibrium. (i.e. [concept] \in Dominant Strategy, Bayes-Nash, Ex Post*)

*sincere bidding may be required instead of truthful

BNE: Best-response strategies σ form a Bayes-Nash Equilibrium (BNE) in (x, p) when

$$\mathbb{E}_{\boldsymbol{v}_{-i}}[\boldsymbol{v}_{i} \, \boldsymbol{x}_{i}(\sigma_{i}(\boldsymbol{v}_{i}), \boldsymbol{\sigma}_{-i}(\boldsymbol{v}_{-i})) - p_{i}(\sigma_{i}(\boldsymbol{v}_{i}), \boldsymbol{\sigma}_{-i}(\boldsymbol{v}_{-i}))] \geq \\ \mathbb{E}_{\boldsymbol{v}_{-i}}[\boldsymbol{v}_{i} \, \boldsymbol{x}_{i}(\boldsymbol{b}_{i}, \boldsymbol{\sigma}_{-i}(\boldsymbol{v}_{-i})) - p_{i}(\boldsymbol{b}_{i}, \boldsymbol{\sigma}_{-i}(\boldsymbol{v}_{-i}))] \quad \forall i, \boldsymbol{v}_{i}, \boldsymbol{b}_{i}$$

BIC: A mechanism (x, p) is Bayesian Incentive-Compatible (BIC) when

$$\mathbb{E}_{v_{-i}}[v_i \ x_i(v_i, v_{-i}) - p_i(v_i, v_{-i})] \ge \mathbb{E}_{v_{-i}}[v_i \ x_i(b_i, v_{-i}) - p_i(b_i, v_{-i})] \qquad \forall i, v_i, b_i$$

Revelation Principle + Revenue Equivalence

Revelation Principle: It is without loss to focus on [DS/B/EP]IC mechanisms.

Revenue Equivalence: Mechs w/ the same outcome have the same $\mathbb{E}[Rev]$.

Maximizing Revenue

How can we max revenue? Can't just charge v_i – not IC. Still need the

payment identity.

How else can we express revenue?

Any allocation rule can be expressed as a distribution of prices.

Any allocation is a distribution over prices

What is our revenue for a price p?

Single-bidder revenue curve $R(p) = p \cdot \Pr_{v}[v \ge p] = p \cdot [1 - F(p)]$

Moving to quantile space:

$$q = 1 - F(v)$$

$$q = 1 - F(v)$$
 $v(q) = F^{-1}(1 - q)$ $q \sim U[0,1]$

$$q \sim U[0,1]$$

Single-bidder revenue curve in quantile space

$$P(q) = v(q) \cdot q$$

Happily,
$$\frac{d}{dq}P(q) = \varphi(v(q))$$

We define $\frac{d}{da}\bar{P}(q) = \bar{\varphi}(v(q))$ where is $\bar{P}(\cdot)$ the concave closure of $P(\cdot)$.

price v

Maximizing Revenue

For virtual value functions

$$\varphi_i(v_i) = \frac{1 - F_i(v_i)}{f_i(v_i)}$$

Expected Revenue

$$= \mathbb{E}_{v} \left[\sum_{i} p_{i}(v) \right] = \mathbb{E}_{v} \left[\sum_{i} x_{i}(v) \varphi_{i}(v_{i}) \right] =$$

True by payment identity OR

$$\frac{d}{dq}P(q) = \varphi(v(q))$$

$$= \mathbb{E}_{v} \left[\sum_{i} x_{i}(\boldsymbol{v}) \bar{\varphi}_{i}(v_{i}) \right]$$

Only DSIC if $\varphi_i(v_i)$ is monotone

$$v\left[\sum_{i} x_{i}(\boldsymbol{v}) \varphi_{i}(v_{i})\right] = \begin{cases} \text{Expected Virtual} \\ \text{Welfare} \end{cases}$$

To max rev, choose x to maximize this

with
$$x=0$$
 when $\bar{\varphi}_i \neq \varphi_i$

Multiparameter Social Welfare: VCG is DSIC

$$x \coloneqq \operatorname{argmax} \sum_{j} v_{j}(x_{j}(b_{i}, b_{-i}))$$

More utility for bidding actual value:

$$v_{i}(x_{i}(v_{i}, b_{-i})) - p_{i}(v_{i}, b_{-i}) \ge v_{i}(x_{i}(b_{i}, b_{-i})) - p_{i}(b_{i}, b_{-i}) \quad \forall i, v_{i}, b_{i}, b_{-i}$$

i wants to max wrt (v_i, b_{-i})

$$p_i(b_i, b_{-i}) = \sum_{j \neq i} b_j(x_j(0, b_{-i})) - \sum_{j \neq i} b_j(x_j(b_i, b_{-i}))$$

value v_i utility $v_i x_i(\boldsymbol{b}) - p_i(\boldsymbol{b})$ $bid b_i$

unrelated to i's bid

 $\max w/o i$, curr welf w/o i, x is defined to max wrt \boldsymbol{b}

Ascending Auctions

Parallel: All prices increase by ε every round

Walrasian Equilibria + Gross Substitutes

Crawford-Knoer

Walrasian Equilibrium:

For prices q

- Everyone gets an item that maximizes their utility (in their demand set).
- $-q_j = 0 \Leftrightarrow j$ is unsold

Bid on an item in your demand set that maximizes your utility under the current+ ε prices.

$$arg max v_j - q_j$$

- Prices increase only when bid on.
- Never release items. (Only overbid!)

For Gross Substitutes (whenever your utility-maximizing bundle is the sameprice items you still have plus some other items), this terminates in a WE.