
DS 574 Algorithmic Mechanism Design Lecture #9
Fall 2023 Prof. Kira Goldner

Linear Programming Duality

The Dual of a Linear Program

Every linear program has a dual linear program. We call the original linear program the primal.
There are a bunch of amazing properties that come from LP duality.

Going back to our nutrition example, we want to find the dual linear program. A maximization
problem’s dual is a minimization problem. Here, we have a minimization problem, so the dual will
be a maximization problem.

To take the dual: Label each primal constraint with a new dual variable. In our new linear
program, each dual constraint will correspond to a primal variable. For the left-hand side, count
up the appearances of this constraint’s primal variable (e.g., x1) in each of the primal constraints
and multiply them by the dual variable for those constraints. That is, if x1 appears 5 times (5x1)
in constraint for y1, then add 5y1 to x1’s constraint. Don’t forget to include its appearance in the
primal’s objective function, but this will be the right-hand side of the constraint. Finally, the dual
objective function is given by the right-hand side coefficients and their correspondence to the dual
variables via the constraints in the primal. (See below).

Primal:

min 0.6y1 + 0.35y2

subject to 5y1 + 7y2 ≥ 8 (starch) (x1)

4y1 + 2y2 ≥ 15 (proteins) (x2)

2y1 + 1y2 ≥ 3 (vitamins) (x3)

y1, y2 ≥ 0 (non-negativity)

Dual:

max 8x1 + 15x2 + 3x3

subject to 5x1 + 4x2 + 2x3 ≤ 0.6 (grain 1) (y1)

7x1 + 2x2 + 1x3 ≤ 0.35 (grain 2) (y2)

x1, x2, x3 ≥ 0 (non-negativity)

Sometimes, the dual can even be interpreted as a related problem, as we will see.

The following is the normal form for a maximization problem primal and its dual:

max cTx min yTb

subject to Ax ≤ b subject to ATy ≥ c

x ≥ 0 y ≥ 0



For the above example:

A =

[
5 4 2
7 2 1

]
b =

[
0.6
0.35

]
c =

 8
15
3


Example 3: Unweighted Maximum Matching

Given a graph G = (V,E) choose a maximum size matching—a set of edges S such that no vertex
is covered by more than one edge.

Decision variables: xe indicating whether edge e is in the matching.

Primal Linear Program:

max
∑
e∈E

xe

subject to
∑
e:v∈e

xe ≤ 1 ∀v (vertex matched at most once) (yv)

xe ≥ 0 ∀e (non-negativity)

Taking the dual of the above primal, we get the following linear program:

min
∑
v∈V

yv

subject to
∑
v∈e

yv ≥ 1 ∀e (edge covered) (xe)

yv ≥ 0 ∀v (non-negativity)

What problem is this? (Fractional) Vertex Cover!

Conditions for Optimality

Weak Duality

Theorem 1 (Weak Duality). If x is feasible in (P) and y is feasible in (D) then cTx ≤ bTy.

Proof.

cTx
1
≤ (ATy)x = yTAx

2
≤ yTb = bTy.

Where (1) follows by the dual constraints ATy ≥ c and (2) follows by the primal constraints
Ax ≤ b.

This theorem says that any feasible solution to the primal is a lower bound to any feasible solution
to the dual, and likewise, any feasible solution to the dual is an upper bound to the primal.

That is, fractional vertex cover gives an upper bound on how large the (fractional) maximum



matching can be, and likewise, fractional maximum matching gives a lower bound on how small
the minimum (fractional) vertex cover can be.

What is not trivial (or by definition) is strong duality, and in fact, it is so involved that we will not
even prove the hard direction: that an optimal solution always exists.

Conditions for Optimality

Strong Duality

Strong duality states that everything in fact needs to hold with equality to be optimal.

Theorem 2 (Strong Duality). A pair of solutions (x∗,y∗) are optimal for the primal and dual
respectively if and only if cTx∗ = bTy∗.

Proof. (⇐) The if direction is easy to see: we know that the dual gives an upper bound on the
primal, so if these objectives are equal, then the primal objective that we are trying to maximize
could not possible get any larger, as it’s always at most the dual’s objective. This is as tight as
possible.

(⇒) The only if direction is harder to prove, and we’ll skip it for now.

Complementary Slackness

We rewrite the primal and dual with each constraint separated, and then formalize another con-
dition for optimality called complementary slackness, which states that for each corresponding
constraint and variable, at most one can be slack in an optimal solution.

Primal (P ): Dual (D):

max cTx min yTb

subject to
∑
i

ajixi ≤ bj ∀j (yj) subject to
∑
i

aijyi ≥ ci ∀i (xi)

xi ≥ 0 ∀i yj ≥ 0 ∀j

Theorem 3 (Complementary Slackness). A pair of solutions (x∗,y∗) are optimal for the primal
and dual respectively if and only if the following complementary slackness conditions (1) and (2)
hold: ∑

i

ajixi = bj or yj = 0 (1)
∑
i

aijyi = ci or xi = 0. (2)

Proof. (⇒) According to complementary slackness, by rearranging our constraint, either
∑

i ajixi−
bj = 0 or yj = 0. This ensures that the multiplied quantity (

∑
i ajixi − bj) yj = 0, as one of the

two terms on the left-hand side must be 0. Then multiplying out and rearranging gives that
yj
∑

i ajixi = yjbj . This process with all rows gives the equality from complementary slackness
that yTAx = yTb.

Similarly, using the condition that
∑

i aijyi = ci or xi = 0 gives that cTx = (ATy)x.



Then following our inequalities in the proof of weak duality, they now all hold with equality, so
by Strong Duality, (x,y) are optimal solutions to the primal and dual.

cTx = (ATy)x = yTAx = yTb = bTy.

(⇐) Similarly, if Strong Duality holds, the above inequalities hold with equality, in which case
it must be that yj

∑
i ajixi = yjbj for all j and

∑
i aijyixi = cixi for all i, and hence that either∑

i ajixi − bj = 0 or yj = 0 for all j and that either
∑

i aijyi = ci or xi = 0 for all i.

Maximizing Welfare in the Unit Demand Setting

Given n unit-demand bidders and m items, determine the allocation rule that maximizes welfare.
We do this by formulating a linear program, determining our objective, decision variables, and
constraints:

max

n∑
i=1

m∑
j=1

vijxij

subject to
n∑

i=1

xij ≤ 1 ∀j (items allocated at most once)

m∑
j=1

xij ≤ 1 ∀i (bidders unit demand)

xij ≥ 0 ∀i, j (non-negativity)

We then formulate the dual:

min
n∑

i=1

ui +
m∑
j=1

pj

subject to ui + pj ≥ vij ∀(i, j) (IC)

ui, pj ≥ 0 ∀i, j (non-negativity)

By rewriting our first constraint as
ui ≥ vij − pj ,

we reinterpret it as an incentive compatibility constraint. Instead of determining an allocation, we
determine buyer utilities and item prices, the sum of which we minimize.

On our homework, we will use this to prove that for gross substitutes valuations, the optimal
primal allocation x and dual solution p form a Walrasian equilibria, and this is precisely the valu-
ation class for which welfare can be maximized in polynomial time.

We will need to use the following theory of when there exist polynomial-time algorithms for linear
programs.



Separation Oracles

Fact 1 (Ellipsoid Algorithm). Every linear program that admits a polynomial-time separation
oracle can be solved in polynomial time.

Figure 1: Left: A sketch of a separation oracle. For example, in the toy example on the right,
on the alleged feasible solution (13 ,

1
2), the separation oracle may return the violated constraint

x1 + 2x2 ≤ 1.

Consider a linear program such that:

a. There are n decision variables.

b. There are any number of constraints, for example, exponential in n. These constraints are
not provided explicitly as input.

c. There is a polynomial-time separation oracle for the set of constraints. By “polynomial-time,”
we mean running time polynomial in n and the maximum number of bits of precision required.
A separation oracle (Figure 1) is a subroutine that takes as input an alleged feasible solution
to the LP, and either (i) correctly declares the solution to be feasible, or (ii) correctly declares
the solution to be infeasible, and more strongly provides a proof of infeasibility in the form
of a constraint that the proposed solution violates.

(The ellipsoid algorithm is not actually practical, but there are other algorithms that are often
practically useful that rely on a separation oracle, such as cutting plane methods.)


