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Recap of 
Before the Break

2



3 items for sale
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Goal: Determine who gets what
and who pays what

Identical:
◦ “single-dimensional”

All different:
◦ “multi-dimensional”

◦ Combinatorial valuations
◦ Additive Valuations
◦ Independent valuations 

Something in between?



Taxation and Menus
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Mechanism
!(#)
%(#)#

(! #& , %(#&))
(! #( , %(#())
(! #) , %(#)))

Menu

Let buyer pick favorite

Buyer with * picks
own option 

Incentive-compatibility (truthfulness): For all w, + # > + - ∣ #
Restricting to IC (truthful) mechanisms is without loss.

Equivalent

Question: What size of menu is 
needed to guarantee revenue?



n items for sale
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Identical:
◦ “single-dimensional”

All different:
◦ “multi-dimensional”

◦ Combinatorial valuations
◦ Additive Valuations
◦ Independent valuations 

Something in between?

infinite 
menu size

infinite 
menu size

finite menu size

menu size 1
Optimal Approximate

menu size 1



Menu Complexity for Approximation:
1 buyer, additive over n independent items
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!
" -approx

LY ‘13
1 − !

" -approx
BGN ‘17

1 poly(n) exp(n) finite infinite

Optimal
DDT ‘13

Constant-approx
LB: HN ‘12

UB: BGN ‘17
BILW ’14

1 − % -
approx?



Budgets
DW ‘17

1 item
Myerson ‘81

1 − # -approx
for FedEx
SSW ‘18

FedEx
FGKK ‘16

Partially-
Ordered

DGSSW ‘18

Multi-Dimensional Menu Complexity 
for n Items

7

$
% -approx

LY ‘13
1 − $

% -approx
BGN ‘17

1 poly(n) exp(n) finite infinite

Optimal
DDT ‘13

Constant-approx
LB: HN ‘12

UB: BGN ‘17
BILW ’14

1 − # -
approx?

1 buyer, 
n indep. items, 

additive



Optimal Menu Complexity Spectrum
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“Multi-dimensional”
2 heterogenous 

items

Single-
dimensional

1 item

FedEx
1,2,3-day 
shipping

Partially-
Ordered

Wifi, +TV, 
+Cable

1 2n-1 unbounded uncountable3·2n-1-1

Budgets
$5, $10, $12 

budgets



Lower Bounds for (1 − $)-approximations 
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n correlated 
heterogenous items
BCKW ‘10, HN ‘13

n independent 
additive items

G ‘18

1 infinite

FedEx
SSW ‘18

Ω 1
' $ Ω 1

$ for $ = 1
,- Ω exp 1

$ for $ = 1
,

n independent 
additive items

BGN ‘17



To Come
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The degree of complexity in the menu comes from the IC 
constraints which stitch together otherwise separate 1D 
problems.

Methods for understanding this:
◦ Part I: Revenue Curves
◦ Part II: Complementary Slackness conditions



Part I:
Revenue Curves
METHODOLOGY FOR UNDERSTANDING THE 
NUMBER OF PRICES NEEDED
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Mapping Prices to Revenue
p * Pr[customer buys at price p]

OPT

price

E[
re

v]

= " ⋅ [1 − '1(")]



Allocation Rules and Prices
pr

ob
. o

f s
er

vi
ce
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value



Allocation Rules and Prices

1/3 + 2/3

pr
ob

. o
f s

er
vi

ce

=

bid
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2
3

1
3

(1, %& ' +
)
& ')

(%& ,
%
& ')

(0 , 0)

Menu

Menu Size = 2
= # prices in supp



Any allocation is a dist. over prices

15

!
!" #(%)

% "

1

0

#(")

# % = *
+

, !
!" # " !"



Randomized Pricings

price

E[
re
v]



“Ironed” Revenue Curve

price 

E[
re

v]
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OPT

Least concave upper bound on curve (in value space)



The FedEx Setting
[FIAT GOLDNER KARLIN KOUSTOUPIAS 2016]

18



The FedEx Setting

1 day

2 days

3 days

n days

Shipping 
options

deadline i
= when they need the 
package sent by

*indifferent if the package is shipped early

(v,i) ~ F

...

value v = 
how much shipping 
the package is worth

19

[Fiat G. Karlin Koutsoupias ’16]



The FedEx Setting
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Mechanism(", $)

(", $) ∼ '

()(", $) = prob buyer gets 
i-day shipping

*(", $) = expected payment

1 2

Can have 
exponentially many 

menu options
(1 ⋅ 1, $5)

(2 ⋅ 23 , $3)
(2 ⋅ 1, $5)

[Fiat G. Karlin Koutsoupias ’16]

Menu



21

How do we maximize revenue for 2 days?

Price for 
1-day shipping

Price for 
2-day shipping

Day 2
revenue curve

E[
re

v]
E[

re
v]

price

price

Day 1
revenue curve

Set best prices for 
each day when they 

are decreasing.



Price for 
1-day shipping
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How do we maximize revenue for 2 days?

Price for 
2-day shipping

Day 2
revenue curve

E[
re

v]
E[

re
v]

price

price

Day 1
revenue curve

We wouldn’t 
actually get 

this revenue!

Not incentive 
compatible!



FedEx
Revenue Curves
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Constrained revenue from Day 2:

price 

E[
re

v]
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Price for day 1



Constrained revenue from Day 2:

Day 2

price of day 1

E[
re

v]

Price for day 1 Price for day 1
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What to optimize:

Day 1 and 2

Day 2E[
re

v]
price

E[
re

v]

price of day 1
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What to optimize:
Day n-1 and n

Day nE[
re

v]

price of day n-2
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What to optimize:
Day n-1 and n

Day nE[
re

v]

price of day n-2
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Optimal Variables
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Optimal Allocation Rule
pr

ob
. o

f s
hi

pm
en

t

bid
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E[
re

v]

price !"!#



Optimal Allocation Rule

bid

pr
ob

. o
f s

hi
pm

en
t
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E[
re

v]

price!! !
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!" #

0

#

!% #

0

#

!& #

0

!' #

0

Bad Example

#

#



Exponential Menu Complexity
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Upper Bound: In the worst case, each deadline ! has 2#$%
options. [Fiat G. Karlin Koutsoupias ’16]

Lower Bound: Distributions exist for this example, forcing 
2#$% options for each deadline. 
[Saxena Schvartzman Weinberg ’18]

Menu size is 2& − 1 overall, tight.

)* +
0

+
)- +

0

+
). +

0

)% +
0

+

+



Approximate 
FedEx Menu 
Complexity
[SAXENA SCHVARTZMAN WEINBERG 2018]
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Limiting Menu Complexity
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How can we achieve good revenue with a small menu, or 
equivalently randomizing over fewer prices?

Idea: We only randomize over un-ironed peaks.  
What if we constrain this number?

price

E[
re

v]



Revenue via Polygon Approximation

price

E[
re

v]

[Saxena Schvartzman Weinberg ’18]

Menu size is limited by the # points supporting the curve.



Menu Complexity for (1 − $)-approx
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Upper Bound: & '
(
)

*+, -
. , 0, 1
2 = & 4)

2

Lower Bound: Ω '6 = Ω 7
2 for $ = & 7

4)

price

E[
re

v]

[Saxena Schvartzman Weinberg ’18]



Revenue Curve Recap
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◦ Splitting into multiple prices originates from IC 
constraints.

◦ Curves depict the limits of how prices can split.

◦ Essentially any combination of peaks/valleys can 
exist. [Saxena Schvartzman Weinberg ’18]

◦ When the mechanism is determined by revenue 
curves, approximation can be done via revenue 
curve approximation.



Part II:
Duality Approach
METHODOLOGY FOR REASONING ABOUT WHEN 
ALLOCATION PROBABILITIES MUST BE DISTINCT

40



The Primal
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Maximize E[Rev]

subject to: more utility for (v,i) than (v’,i’)
feasibility

E[Virtual Welfare]

more utility for (v,i) than (v,i’)
weak monotonicity of allocation
feasibility

Maximize

subject to:



Duality
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Primal Dual
maximize f(x) minimize h(y)
subject to g(x) ≥ 0 subject to r(y) ≤ 0

Optimal pair (x,y) ⟺ complementary slackness is satisfied, 
feasible: g(x) = 0 or y = 0; h(y) = 0 or x = 0.

Lagrangian Primal: maximizex minimizey f(x) + y g(x).

Lagrangian Dual: minimizey maximizex f(x) + y g(x).

Complementary slackness: g(x) = 0 or y = 0.



The Primal
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maximize

subject to:

= E[revi] using 
payment identity

Report i over i’

feasibility

Report v over v’

Dual variables

!
"

#
$

%
&" ' (" ' )" ' *'

)" ' ∈ [0, 1]

#
$

1
)" 2 *2 − #

$

1
)"45 2 *2 ≥ 0

)"7 ' ≥ 0

∀9 ∈ {2, … , =}

∀9, '?@(B)

D@,@4E(B)

F@ B ≔ Pr[9−day shipping to bidder with ', 9 ]



The Dual
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minimize !," maximize feasible #

$% & ≔ () * +
∫
-

.
/%,%12 3 45 − ∫

-

.
/%72,% 3 45 − 8%

9(&)

<)(*)

=

)

>
?

-

<) * @% & $% & 4*

where

@% & ≔ Pr[D−day shipping to bidder with *, D ]



minimize !," maximize feasible #

An Optimal Primal/Dual Pair

45

Complementary Slackness:
Constraint is tight (= 0) or dual variable is 0.

Report i over i’

Report v over v’

Dual variables
$
%

&
#' ( )( − $

%

&
#'+, ( )( ≥ 0

#'/ 0 ≥ 0 12(4)

62,2+8(4)

9
'
$
%

:
;' 0 <2 4 =2 4 )0

Can’t change !,# to 
further minimize.



Understanding 
Dual Variables

46



!" # = 1

!" # =? ?

!" # = 0

Virtual Values
Day i

+

0

−

0

H

It’s left to us to determine the allocation in the zeroes to satisfy 
complementary slackness.

32

() * Φ)(*)
(*, /)

min3,4 max7 8
)
9
:

;
() * Φ) * !" # <*



Complementary Slackness: 
Inter-day utility is equal (!" = !$) where %$," is positive.

Dual Variable % (reporting i over i-1)

Day 1

+

0

−

0

H

Day 2

+

0

−

0

H

33

((, 2)((, 1)

," ( Φ"(() ,$ ( Φ$(()

%$," ( > 0

0
1

2
34 5 65 − 0

1

2
348" 5 65 ≥ 0 :;,;8<(=)Report i over i-1

a

v

a1(v)

y
xz

1

0

a2(v)



!" # Φ"(#)
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“ironed interval”

Day i

+

−
0

H

Complementary Slackness: 
Utility is equal for reporting just under v—ai’(v) = 0.
The allocation is constant in ironed intervals: '( ) = '((+).

Dual Variable ,: (reporting v over v’)

," # > 0

," / = 0

," 0 = 0(0, 2)

(/, 2)

Report v over v’3"4 # ≥ 0 6(())



Recap
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Because ! maximizes VW, 
"# $ > 0 ⟹ !# $ = 1 and *# $ < 0 ⟹ !# $ = 0

Complementary slackness with ,:
,# $ > 0 means - is in an ironed interval [-, -] and implies 
!# $ is constant on [-, -] , or !# $ = !#($).

Complementary slackness with 3:
3#,#45 $ > 0 implies utility is equal across deadlines i, i-1

" > 0 ⟹ 6 = 1 and " < 0 ⟹ 6 = 0
,# $ > 0 ⟹ allocation constant
3#,#45 $ > 0 ⟹ utility of i,i-1 equal at v



Implications for 
the Primal
VIA COMPLEMENTARY SLACKNESS

51
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1

+

−

0

H

2

+

−

0

H

Utility equal.

x

y

z

Allocation 
constant.

Utility equal.
a

v

a1(v)

y
xz

1

0

a2(v)

Splitting the allocation
! > 0 ⟹ % = 1 and ! < 0 ⟹ % = 0
)* + > 0 ⟹ allocation constant
,*,*./ + > 0 ⟹ utility of i,i-1 equal at v



FedEx Worst Case

53

1 2 3 4



FedEx Menu Complexity
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1 2 3 4

• Exponentially many prices for day i (2i-1)
• Exponentially many prices total (2n-1) [Fiat G. Karlin Koutsoupias ‘16]

• Proven to be tight. [Saxena Schvartzman Weinberg ’18]



The Budgets Setting

B1

B2

B3

Bn

Budget 
options

(v,B) ~ F

...

value v = 
how much the item is 
worth

55

budget B
= how much they can 
afford

[Devanur Weinberg ’17]

Result: At most 3·2n-1-1 prices.



Partially-Ordered 
Items
[DEVANUR GOLDNER SAXENA SCHVARTZMAN
WEINBERG 2018]
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The Partially-Ordered Setting
Service options

interest G
= service or set of 
goods desired

(v,G) ~ F

value v = 
how much getting 
their interest is worth

57

[Devanur G. Saxena Schvartzman Weinberg ’18]



minimize !," maximize feasible #

An Optimal Primal/Dual Pair
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Complementary Slackness:
Constraint is tight (= 0) or dual variable is 0.

Report G over G’

Report v over v’

Dual variables
$
%

&
#' ( )( − $

%

&
#'+ ( )( ≥ 0

#'. / ≥ 0 01(3)

51,1.(3)

7
'
$
%

8
9' / :1 3 ;1 3 )/

Can’t change !,# to 
further minimize.

2

1

3

C
A B

For all <. ∈ >?(<)



Dual Variables and Virtual Values
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Interest A

0

H

Interest B

0

H

Interest C

0

H

Complementary Slackness: 
Utility of G and G’ are equal where !G,G’ > 0.

Implies e.g. if !C,A > 0 then A is at least 
as preferable as B.

C

A B

!",$ % > 0

!",( % > 0



C

A B

Dual Variables and Virtual Values
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Interest A

0

H

Interest B

0

H

! > 0 ⟹ % = 1 and ! < 0 ⟹ % = 0
)* + > 0 ⟹ allocation constant
,-,/ + > 0 ⟹ utility of A,B equal at v,0,/ + > 0 ⟹ A is preferable to B at v

12,3 4 > 0 12,5 4 > 0



Menu Complexity 
Lower Bound

61



Key Idea for the Lower Bound
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A B

+

+
x1

−

−

r̄A = x1A

rA = x1A

rB

aA(x1) > 0 aB(x1) = 1

aA(rA) > 0

C

A B
! > 0 ⟹ % = 1 and ! < 0 ⟹ % = 0
)* + > 0 ⟹ allocation constant
,-,/ + > 0 ⟹ A is preferable to B at v



Key Idea for the Lower Bound
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A

+
r̄A = x1A

x1

x2

−
rA = x1A

aA(x1) > 0 aB(x1) = 1

aA(rA) > 0
aB(x2) > 0

aB(rB) > 0

C

A B
! > 0 ⟹ % = 1 and ! < 0 ⟹ % = 0
)* + > 0 ⟹ allocation constant
,-,/ + > 0 ⟹ A is preferable to B at v

B

+
rB = x2B

−
rB = x2B



Key Idea for the Lower Bound
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A B

+

+

r̄A = x1A

rB = x2B

x1

x2

−

−

rB = x2B

rA = x1A

aA(x1) > 0 aB(x1) = 1

aA(rA) > 0
aB(x2) > 0

aB(rB) > 0
> aB(rB) a

v

1

0
x2rB = x2B

rA = x1A

! > 0 ⟹ % = 1 and ! < 0 ⟹ % = 0
)* + > 0 ⟹ allocation constant
,-,/ + > 0 ⟹ A is preferable to B at v



Lower Bound
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A B

…

+
+

…

x1

x2

x3

x4

xM

xM�1

xM�2

−
−

r̄B

rB
rA

r̄A
aA(x1) > 0 aB(x1) = 1

aA(rA) > 0

aB(x2) > 0

aB(rB) > 0

aB(x4) > 0
aA(x3) > 0

> aA(rA)

> aA(x5)
> aB(x4)

> aB(x2)
> aA(x3)

… …

> M different options are presented to the buyer.

For any M:

! > 0 ⟹ % = 1 and ! < 0 ⟹ % = 0
)* + > 0 ⟹ allocation constant
,-,/ + > 0 ⟹ A is preferable to B at v



Master Theorem (Informal)
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For any dual that is given only by signs and 
nonnegative variables (ironed intervals + ! flow), 
there exists a distribution that causes this dual.

Corollary: 
The “bad dual” exists.

A B

…
+

+

…
x1

x2

x3

x4

xM

xM�1

xM�2

−
−

r̄B

rB
rA

r̄A



Menu Complexity 
Upper Bound

67



Upper bound
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A chain is a sequence of overlapping ironed intervals with 
! > 0 at specific points.  

If there are M such intervals, the 
menu size is at most 2M – finite.

If there are infinitely many 
intervals, they’re bounded and 
monotone, so they converge to 
a point that has virtual value 0 
and is un-ironed for both A and B
– menu size 1.

Always finite!

A B

…
+

+

…

x1

x2

x3

x4

xM

xM�1

xM�2

−
−

r̄B

rB
rA

r̄A



Multi-Unit Pricing 
Lower Bound
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The Multi-Unit Pricing Setting

1

2

3

n

# item
options

(v,d) ~ F

...

value v = 
how much each item 
is worth

70

demand d
= how many units 
they want

[Devanur Haghpanah Psomas ’17]



Extension to MUP
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2

1 
* 1/2

3

2

3

1

At 2/3 
payment

At 1/2 
payment

A

B

…

+
+

…

xM�1B
= rB

rB = x2B
x1

x2

x3

x4

xM

xM�1

xM�2

−

−

x1
2
x2
2
x3
2
x4
2

xM�2

2
xM�1

2
xM
2

xM
2

A

= r
A

r̄
A

= x1
2

A

x1
2

A

= x3
2

A



Summary
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The Settings
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Each buyer has a most-preferred-outcome (e.g. 3-day 
shipping).

The outcomes are structured such that a buyer’s value for 
this outcome tells you his value for all outcomes.

Properties:
◦ Collapsible allocation rule: degree of happiness
◦ Reduced IC constraints: specified by structure
◦ Single-dimensional perks: payment identity, etc



The Methods
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Revenue Curves:
◦ Exactly where complexity grows or “splits”
◦ Limits of splitting
◦ Approximation via polygons

Complementary Slackness conditions:
◦ Where are certain outcomes preferred?
◦ Where must the allocation be positive?
◦ Where must the allocation be distinct, forcing different 

menu options?
◦ What are the limits to this?



Optimal Menu Complexity Spectrum
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“Multi-dimensional”
2 heterogenous 

items

Single-
dimensional

1 item

FedEx
1,2,3-day 
shipping

Partially-
Ordered

Wifi, +TV, 
+Cable

1 2n-1 unbounded uncountable3·2n-1-1

Budgets
$5, $10, $12 

budgets



Lower Bounds for (1 − $)-approximations 
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n correlated 
heterogenous items
BCKW ‘10, HN ‘13

n independent 
additive items

G ‘18

1 infinite

FedEx
SSW ‘18

Ω 1
' $ Ω 1

$ for $ = 1
,- Ω exp 1

$ for $ = 1
,

n independent 
additive items

BGN ‘17



Budgets
DW ‘17

1 item
Myerson ‘81

1 − # -approx
for FedEx
SSW ‘18

FedEx
FGKK ‘16

Partially-
Ordered

DGSSW ‘18

Multi-Dimensional Menu Complexity 
for n Items

77

$
% -approx

LY ‘13
1 − $

% -approx
BGN ‘17

1 poly(n) exp(n) finite infinite

Optimal
DDT ‘13

Constant-approx
LB: HN ‘12

UB: BGN ‘17
BILW ’14

1 − # -
approx?

1 buyer, 
n indep. items, 

additive



Key Open Problems
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◦ Other settings with more complex IC links?

◦ Lower bounds in terms of !?

◦ Constant-factor approximations?

◦ Multiple bidders?

◦ Filling out the questions asked 
in Yannai’s talk in this setting. C

A B

"#,%(') "#,)(')



Thank you!
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