Prof. Kira Goldner

Covered in introduction slides:

- Course policies (also in syllabus).
- What to expect in this class (also in FAQ).
- Sample of content we'll cover.

Runtime Review

We will analyze the runtime of the following algorithm.

```
Algorithm 1 FindMinIndex \((B[t+1, n])\).
    Let MinIndex \(=t+1\).
    for \(i=t+1\) to \(n\) do
        if \(B[i]<B[\) MinIndex \(]\) then
            MinIndex \(=i\).
        end if
    end for
    return MinIndex.
```

When we analyze runtime, we'll do an informal accounting. We'll count basic operations (algebra, array assignment, etc) as constant time. This isn't quite right-for example, multiplication of large numbers should scale with the bit complexity-but is a good approximation for us. We will analyze runtime by counting these operations.

Each of the following lines is a unit (constant-time) operation:

- Let MinIndex $=t+1$.
- if $B[i]<B[$ MinIndex $]$ then
- MinIndex $=i$.

The for-loop runs $n-t$ times (notice that both n and t are variables as they are in our input). Thus the runtime of this algorithm is $O(n-t)$.

Asymptotic Notation

Definition 1 (Upper bound $O(\cdot))$. For a pair of functions $f, g: \mathbb{N} \rightarrow \mathbb{R}$, we write $f \in O(g(n))$ if there exist constants c_{1}, c_{2} such that for all $n \geq c_{1}$,

$$
f(n) \leq c_{2} g(n)
$$

We'll often write $f(n)=O(g(n))$ because we are sloppy.

Translation: For large n (at least some c_{1}), the function $g(n)$ dominates $f(n)$ up to a constant factor.

Definition 2 (Lower bound $\Omega(\cdot)$). For a pair of functions $f, g: \mathbb{N} \rightarrow \mathbb{R}$, we write $f \in \Omega(g(n))$ if there exist constants c_{1}, c_{2} such that for all $n \geq c_{1}$,

$$
f(n) \geq c_{2} g(n)
$$

Definition 3 (Tight bound $\Theta(\cdot))$. For a pair of functions $f, g: \mathbb{N} \rightarrow \mathbb{R}$, we write $f \in \Theta(g(n))$ if $f \in O(g(n))$ and $f \in \Omega(g(n))$.

Exercise: True or False?

$f(n)$	$g(n)$	$O(g(n))$	$\Omega(g(n))$	$\Theta(g(n))$
$10^{6} n^{3}+2 n^{2}-n+10$	n^{3}	T	T	T
$\sqrt{n}+\log n$	\sqrt{n}	T	T	T
$n(\log n+\sqrt{n})$	\sqrt{n}	F	T	F
n	n^{2}	T	F	F

Example solution: Let $f(n)=10^{6} n^{3}+2 n^{2}-n+10$. For $c_{2}=\left(10^{6}+12\right), 10^{6} n^{3}+2 n^{2}-n+10 \leq c_{2} n^{3}$ for all $n \geq 1$, hence it is true that $f(n)=O\left(n^{3}\right)$. For $c_{2}=1,10^{6} n^{3}+2 n^{2}-n+10 \leq c_{2} n^{3}$, hence it is true that it is $f(n)=\Omega\left(n^{3}\right)$. Since $f(n)=O\left(n^{3}\right)$ and $f(n)=\Omega\left(n^{3}\right)$, then $f(n)=\Theta\left(n^{3}\right)$ as well.

Definition 4 (Strict upper bound $o(\cdot)$). For a pair of functions $f, g: \mathbb{N} \rightarrow \mathbb{R}$, we write $f \in o(g(n))$ if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

or equivalently, for any constant $c_{2}>0$, there exists a constant c_{1} such that for all $n \geq c_{1}$,

$$
f(n)<c_{2} g(n)
$$

Definition 5 (Strict lower bound $\omega(\cdot)$). For a pair of functions $f, g: \mathbb{N} \rightarrow \mathbb{R}$, we write $f \in \omega(g(n))$ if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty
$$

or equivalently, for any constant $c_{2}>0$, there exists a constant c_{1} such that for all $n \geq c_{1}$,

$$
f(n)>c_{2} g(n)
$$

Asymptotic Properties

- Multiplication by a constant:

If $f(n)=O(g(n))$ then for any $c>0, c \cdot f(n)=O(g(n))$.

- Transitivity:

If $f(n)=O(h(n))$ and $h(n)=O(g(n))$ then $f(n)=O(g(n))$.

- Symmetry:

If $f(n)=O(g(n))$ then $g(n)=\Omega(f(n))$.
If $f(n)=\Theta(g(n))$ then $g(n)=\Theta(f(n))$.

- Dominant Terms:

If $f(n)=O(g(n))$ and $d(n)=O(e(n))$ then $f(n)+d(n)=O(\max \{g(n), e(n)\})$. It's fine to write this as $O(g(n)+e(n))$.

Common Functions

- Polynomials: $a_{0}+a_{1} n+\cdots+a_{d} n^{d}$ is $\Theta\left(n^{d}\right)$ if $a_{d}>0$.
- Polynomial time: Running time is $O\left(n^{d}\right)$ for some constant d independent of the input size n.
- Logarithms: $\log _{a} n=\Theta\left(\log _{b} n\right)$ for all constants $a, b>0$. This means we can avoid specifying the base of the logarithm.
For every $x>0, \log n=o\left(n^{x}\right)$. Hence log grows slower than every polynomial.
- Exponentials: For all $r>1$ and all $d>0, n^{d}=o\left(r^{n}\right)$. Every polynomial grows slower than every exponential
- Factorial: By Sterling's formula, factorials grow faster than every exponential:

$$
n!=(\sqrt{2 \pi n})\left(\frac{n}{e}\right)^{n}(1+o(1))=2^{\Theta(n \log n)}
$$

