
DS 320 Algorithms for Data Science Lecture #11 Worksheet
Spring 2022 Prof. Kira Goldner

Divide & Conquer II: Closest Pair of Points

The Problem

Your input for the closest pair of points problem is a set P of n points in R2. Assume that all of
the x and y coordinates are distinct. The goal is to output a pair of points p1 and p2 minimizing
the Euclidean L2 distance d(p1, p2) =

√
(x2 − x1)2 + (y2 − y1)2.

This problem extremely common: in graphics, computer vision, robotics, scientific simulation, etc.

As we mentioned last time, Divide & Conquer is usually the way to come up with a more effi-
cient algorithm for a problem which already has a polynomial brute force solution. What’s the
näıve algorithm here and what is its running time?

Step 1: Define your recursive subproblem.

Hint: An idea similar to mergesort works here.

Step 2: Combine the solutions to your subproblems.

Given the solutions (closest pair) from your subproblems (make sure the parameters make sense),
how do you combine or compare these solutions to get the solution to our problem of size n?



Computing the Closest Pair Across Halves

Idea: Narrow down the set of points we need to search.

Lemma 1. Let
δ = min{ d(`∗0, `

∗
1) , d(r∗0, r

∗
1) }.

If ` ∈ L and r ∈ R and d(`, r) ≤ δ, then ` and r are within δ of h.

Proof.

Definition 1. Let S = {p ∈ P : d(p, h) < δ} be the set of points within distance δ of the line h.

Note: We can compute S in linear time.

Lemma 1 implies that we only need to search S. Problem: Brute-force over S is O(n2) still.

Idea: Brute force more intelligently.

Lemma 2. Let Sy be a list of the points in S sorted by y-coordinate and let (s, s′) be closest pair
of points in P . If s, s′ ∈ S, then they cannot lie more than 15 positions apart in Sy.

(There are less than 15n such pairs, hence linear time to brute force!)

Proof.

a. Divide S into boxes of side-length δ/2.



b. No two points can share a box.

c. If s and s′ are at least 16 positions apart in Sy, then they’re not the closest pair of points.



The Algorithm

Preprocessing:

Px = P sorted by x coord.

Py = P sorted by y coord.

Closest(Px,Py)

Closest(Px,Py):

Base case. |P | ≤ 3: Brute force

Construct Lx, Ly, Rx, Ry

(`∗0, `
∗
1) = Closest(Lx,Ly)

(r∗0, r
∗
1) = Closest(Rx,Ry)

Construct Sy

(s∗0, s
∗
1) = closest pair in Sy within 15 spots of each other.

Return closest of (`∗0, `
∗
1), (r∗0, r

∗
1), (s∗0, s

∗
1)

Runtime

T (n) = a T (n/b) +O(f(n)) a = b = f(n) =

⇒ T (n) =


