
DS 320 Algorithms for Data Science Lecture #12
Spring 2022 Prof. Kira Goldner

Divide & Conquer III: Integer and Matrix Multiplication

Theorem 1 (The Master Theorem). Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and
let T (n) be defined on the non-negative integers by the recurrence

T (n) = a T (n/b) + f(n),

where we interpret n/b as bn/bc or dn/be. Then

T (n) =


Θ(nlogb a) if f(n) = O(nlogb a−ε) for a constant ε > 0

Θ(nlogb a log2 n) if f(n) = Θ(nlogb a)

Θ(f(n)) if f(n) = Ω(nlogb a+ε) for a constant ε > 0 and

af(n/b) ≤ cf(n) for a constant c < 1 and for all sufficiently large n.

The Problem: Integer Multiplication

Your input for the integer multiplication problem is two n-digit numbers x and y. The goal is to
output their product, x · y.

What’s the näıve algorithm and what’s its running time?

Grade-school multiplication! You multiply together the digits of each of the numbers (plus the
shifts and additions), which is Θ(n2).

Step 1: Define your recursive subproblem.

One idea is to split each number into two parts: x = 10n/2a + b and y = 10n/2c + d. Then

xy = 10nac + 10n/2(ad + bc) + bd.

Additions and multiplications by powers of 10 (just shifts) are linear-time, so this reduces the
problem to smaller multiplication problems:

T (n) = 4T (n/2) + O(n).

Which gives what running time?



Θ(n2). This is not better.

The Speed Up:

We actually only need to make three recursive calls: ac, bd, and (a + b)(c + d).

Step 2: Combine the solutions to your subproblems.

Show why this is enough.

(a + b)(c + d) = (ad + bc) + (ac + bd)

Then:

T (n) = 3T (n/2) + O(n)

= nlog2 3 ≈ n1.59.

Matrix Multiplication: Strassen’s Algorithm

The Problem: Matrix Multiplication

Your input for the matrix multiplication problem is two n × n matrices A and B. The goal is to
output their product, C = AB. Recall that the ikth entry of C is given by cik =

∑n
j=1 aijbjk.

What’s the running time of the näıve algorithm here and why?

Each entry takes linear time and there are n2 entries, hence Θ(n3).

Step 1: Define your recursive subproblem.

We divide each matrix into four submatrices.[
A B
C D

] [
E F
G H

]
=

[
AE + BG AF + BH
CE + DG CF + DH

]
What running time does this give us?



T (n) = 8T (n/2) + Θ(n2)

= Θ(n3).

The Speed Up:

We compute only the following products.

• P1 = A(F −H)

• P2 = (A + B)H

• P3 = (C + D)E

• P4 = D(G− E)

• P5 = (A + D)(E + H)

• P6 = (B −D)(G + H)

• P7 = (A− C)(E + F )

Step 2: Combine the solutions to your subproblems.

Show why this is enough.

AE + BG = P5 + P4− P2 + P6

AF + BH = P1 + P2

CE + DG = P3 + P4

CF + DH = P5 + P1− P3− P7

Then the running time:

T (n) = 7T (n/2) + Θ(n2)

= nlog2 7 ≈ n2.8.


