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Linear Programming II: Duality

Example 1: Grain Nutrients

Suppose BU has hired you to optimize nutrition for campus dining. There are two possible grains
they can offer, grain 1 and grain 2, and each contains the macronutrients found in the table below,
plus cost per kg for each of the grains.

Macros Starch Proteins Vitamins Cost ($/kg)

Grain 1 5 4 2 0.6

Grain 2 7 2 1 0.35

The nutrition requirement per day of starch, proteins, and vitamins is 8, 15, and 3 respectively.
Determine how much of each grain to buy such that BU spends as little but meets its nutrition
requirements.

Decision variables: amount of grain 1 (y1) and grain 2 (y2).

Objective: Minimize cost.
min 0.6y1 + 0.35y2

Constraints:

5y1 + 7y2 ≥ 8 (starch)

4y1 + 2y2 ≥ 15 (proteins)

2y1 + 1y2 ≥ 3 (vitamins)

y1, y2 ≥ 0 (non-negativity)

Example 2: Transportation

You’re working for a company that’s producing widgets among two different factories and selling
them from three different centers. Each month, widgets need to be transported from the factories
to the centers. Below are the transportation costs from each factory to each center, along with the
monthly supply and demand for each factory and center respectively. Determine how to route the
widgets in a way that minimizes transportation costs.

Transit Cost Center 1 Center 2 Center 3

Factory 1 5 5 3

Factory 2 6 4 1

• The supply per factory is 6 and 9 respectively.



• The demand per center is 8, 5, and 2 respectively.

Decision variables: xij is the number of widgets transported from factory i to center j.

Objective: Minimize cost.

min 5x11 + 5x12 + 3x13 + 6x21 + 4x22 + 1x23

Constraints:

x11 + x12 + x13 = 6 (Factor 1 supply)

x21 + x22 + x23 = 9 (Factor 2 supply)

x11 + x21 = 8 (Center 1 demand)

x12 + x22 = 5 (Center 2 demand)

x13 + x23 = 2 (Center 3 demand)

xij ≥ 0 (non-negativity)

Converting to Normal Form

The “Normal Form” of a Linear Program looks like:

max cTx

subject to Ax ≤ b

Our Transportation problem had the LP:

min 5x11 + 5x12 + 3x13 + 6x21 + 4x22 + 1x23

subject to x11 + x12 + x13 = 6 (Factor 1 supply)

x21 + x22 + x23 = 9 (Factor 2 supply)

x11 + x21 = 8 (Center 1 demand)

x12 + x22 = 5 (Center 2 demand)

x13 + x23 = 2 (Center 3 demand)

xij ≥ 0 (non-negativity)

How can we convert it to normal form—a maximization problem with all less-than-or-equal-to con-
straints?

First observe that x11 + x12 + x13 = 6 is equivalent to having both inequalities

x11 + x12 + x13 ≤ 6 and x11 + x12 + x13 ≥ 6.

But, we need both to be ≤ inequalities! We transform them to

x11 + x12 + x13 ≤ 6 and − x11 − x12 − x13 ≤ −6.



The resulting LP in normal form is:

max −5x11 − 5x12 − 3x13 − 6x21 − 4x22 − 1x23

subject to x11 + x12 + x13 ≤ 6 (Factor 1 supply)

−x11 − x12 − x13 ≤ −6 (Factor 1 supply)

x21 + x22 + x23 ≤ 9 (Factor 2 supply)

−x21 − x22 − x23 ≤ −9 (Factor 2 supply)

x11 + x21 ≤ 8 (Center 1 demand)

−x11 − x21 ≤ −8 (Center 1 demand)

x12 + x22 ≤ 5 (Center 2 demand)

−x12 − x22 ≤ −5 (Center 2 demand)

x13 + x23 ≤ 2 (Center 3 demand)

−x13 − x23 ≤ −2 (Center 3 demand)

xij ≥ 0 (non-negativity)

The Dual of a Linear Program

Every linear program has a dual linear program. We call the original linear program the primal.
There are a bunch of amazing properties that come from LP duality.

Going back to our nutrition example, we want to find the dual linear program. A maximization
problem’s dual is a minimization problem. Here, we have a minimization problem, so the dual will
be a maximization problem.

Primal:

min 0.6y1 + 0.35y2

subject to 5y1 + 7y2 ≥ 8 (starch) (x1)

4y1 + 2y2 ≥ 15 (proteins) (x2)

2y1 + 1y2 ≥ 3 (vitamins) (x3)

y1, y2 ≥ 0 (non-negativity)

Dual:

max 8x1 + 15x2 + 3x3

subject to 5x1 + 4x2 + 2x3 ≤ 0.6 (grain 1) (y1)

7x1 + 2x2 + 1x3 ≤ 0.35 (grain 2) (y2)

x1, x2, x3 ≥ 0 (non-negativity)

To take the dual: Label each primal constraint with a new dual variable. In our new linear pro-
gram, each dual constraint will correspond to a primal variable. For the left-hand side, count up
the appearances of this constraint’s primal variable (e.g., x1) in each of the primal constraints and
multiply them by the dual variable for those constraints. That is, if x1 appears 5 times (5x1) in
constraint for y1, then add 5y1 to x1’s constraint. Don’t forget to include its appearance in the
primal’s objective function, but this will be the right-hand side of the constraint. Finally, the dual



objective function is given by the right-hand side coefficients and their correspondence to the dual
variables via the constraints in the primal. (See above).

Sometimes, the dual can even be interpreted as a related problem. You might interpret this
problem as follows. You’re selling nutrients to the BU population and deciding what to price each
macro at. The decision variables xi will indicate the price per nutrient. The constraints indi-
cate that these prices together cannot exceed the prices for the grains that you’re extracting the
nutrients from, since that’s already the market price. The goal is to maximize your profits from
a population that is buying exactly the nutrient diet of 8kg starch, 15kg proteins, and 3kg vitamins.

The following is the normal form for a maximization problem primal and its primal:

max cTx min yTb

subject to Ax ≤ b subject to ATy ≥ c

For the above example:

A =

[
5 4 2
7 2 1

]
b =

[
0.6
0.35

]
c =

 8
15
3


Example 3: Maximum Matching

Given a graph G = (V,E) choose a maximum size matching—a set of edges S such that no vertex
is covered by more than one edge.

Decision variables: xe indicating whether edge e is in the matching.

Primal Linear Program:

max
∑
e∈E

xe

subject to
∑
e:v∈e

xe ≤ 1 ∀v (vertex matched at most once) (yv)

xe ≥ 0 ∀e (non-negativity)


