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Insertion Sort and Induction

We will analyze the runtime of the following algorithm.

Algorithm 1 InsertionSort(A).

Input: A is an array of integers. It is indexed 1 to n.
for i = 2 to A.length do

key = A[i]
j = i− 1
while j > 0 and A[j] > key do

A[j + 1] = A[j]
j = j − 1

end while
A[j + 1] = key

end for
return A

First, we analyze the algorithm’s runtime. This time, we’ll formally argue its runtime.

Theorem 1. Insertion Sort runs in time O(n2).

Proof. We iterate i from 2 to n. In each iteration, we conduct assignments (constant time) and a
while loop which iterates at most i− 1 times. Hence the running time T (n) is

T (n) ≤
n∑

i=2

i− 1 ≤ n(n− 1)

2
= O(n2).

Now, we argue the algorithm’s correctness—that is, that on every possible input, it correctly
outputs a sorted version.

Induction

Theorem 2. For any input instance A, Insertion Sort returns an array sorted in ascending order.

Proof. We show the following by (strong) induction on i: At the end of the ith “for” loop iteration,
the sub-array A[1, . . . , i− 1] is sorted in ascending order.

Base Case (i = 2): When i = 2, the sub-array is A[1], a single element, and is trivially sorted.
Inductive Hypothesis: Suppose that A[1, . . . , i− 1] is sorted for every i = 2, . . . , k.
Inductive Step (i = k + 1): We will need the following Lemma, which needs to be proven

separately.



Lemma 1. (Loop Invariant) The “while” loop shifts A[j + 1, i− 1] to A[j + 2, i] in the same order
for some j, and A[j + 2] ≥ key.

Observe that j is initialized at i−1 ≤ k and decreases only if A[j] > key. Then by the Inductive
Hypothesis (IH), A[1, j] is sorted. Also by the Inductive Hypothesis, if it is non-empty (j < i− 1),
then A[j + 1, i − 1] is sorted, and therefore by Lemma 1, after the “while” loop, so is A[j + 2, i],
and A[j + 2] ≥ key. For termination of the “while” loop to occur, it must either be that

• j = 0, in which case, A[j + 1] = key and A[j + 2] ≥ key along with A[j + 2, i] being sorted
suffices, as together this is the whole array, or

• A[j] ≤ key. Then A[j] ≤ A[j + 1], and since the subarrays are sorted and A[j] ≤ A[j + 1] ≤
A[j + 2], then A[1, i] is sorted.

Loop Invariants

Definition 1. A loop invariant is something that is true before we start and after every iteration
of a loop.

We prove that a loop invariant is true by showing the following three things about it:

• Initialization: It is true prior to the first iteration of the loop.

• Maintenance: If it is true before an iteration of the loop, it remains true before the next
iteration.

• Termination: When the loop terminates, the invariant gives us a useful property that helps
show that the algorithm is correct.

See CLRS Section 2.1 for details, p.18 in the Third Edition. We use this to prove our Lemma.

Proof of Lemma 1. We will prove this formally as a loop invariant.
Initialization: Before the first iteration of the “while” loop, j = i − 1, so the sub-array in

question is empty and thus vacuously shifted. Similarly, it is vacuously true that A[j + 2] ≥ key.
Maintenance: If our statement holds before an iteration of the loop—that A[j + 1, i − 1] is

shifted to A[j + 2, i] in order and A[j + 2] ≥ key—then after assigning A[j + 1] = A[j], it is now
true that A[j, i − 1] was shifted to A[j + 1, i], and after decrementing j to j − 1, it is true for our
updated j that A[j + 1, i− 1] was shifted to A[j + 2, i]. Similarly, because we entered the “while”
loop, A[j] ≥ key, which was shifted to A[j + 1] and became A[j + 2] after decrementing j, so
A[j + 2] ≥ key.

Termination: When the loop terminates, either j = 0, in which case we have shifted the entire
array to the right and A[j + 1] is just the first entry of the array. Or, A[j] < key, in which case
A[j + 2, i] contains the original ordered contents of A[j + 1, i− 1] and the new A[j + 1] is assigned
key > A[j].

This completes our proof of Lemma 1, and thus our proof of Insertion Sort’s correctness!



Comparison-Based Lower Bound via A Counting Argument

So Insertion Sort provably always correctly sorts any input array in O(n2) time! But can we do
better? Perhaps we can improve on the O(n2) running time to get an algorithm that runs in
time O(n)? To answer this question we need to be more precise about what a “solution” can
do. Selection sort inspects the input data using only a single operation: a comparison (i.e. its
branching condition is of the form “If A[i] ≤ A[j] then. . . ”). It is the result of these comparisons
(and nothing else) that determines which swaps are performed, which comparisons are performed
next, and ultimately which permutation π of the input array A is finally output. That is to say,
Insertion Sort operates in the comparison based model of computation:

Definition 2. An algorithm operates in the Comparison Model if it can be written as a binary
decision tree in which:

1. Each vertex is labelled with a fixed comparison (i.e. A[i] < A[j] for particular i, j)

2. Computation proceeds as a root-leaf path down the tree, branching left if the comparison
evaluates to TRUE and right otherwise, and

3. The leaves are labelled with the output of the algorithm (in this case, permutations)

In this model, the running time of the algorithm corresponds to the depth of the tree.

As it turns out, we can prove an easy lower bound for sorting algorithms in the comparison
model. Lower bounds of this sort serve as a guide: either we should not waste effort trying to
derive algorithms that improve on the lower bound, or, we should find techniques that step outside
of the model in which the lower bound is proven.

Theorem 3. Any algorithm that solves the sorting problem in the comparison model must have
run time at least Ω(n log n).

Proof. The proof is via a nice counting argument. Consider any sorted array A of length n. Consider
the n! permutations of A when given as input to our algorithm. It must be that each permutation
has a distinct root-to-leaf path in the decision tree—otherwise, all of the comparisons evaluate to
the same values, indicating that the input order is identical. Hence, there must be at least L > n!
leaves in the algorithm’s binary decision tree.

On the other hand, a binary tree of depth d has L ≤ 2d many leaves. Here d is the running
time of our algorithm, so by combining these two bounds, we have that:

2d ≥ n!

taking the log of both sides, we have:

d ≥ log(n!) = Ω(n log n).

To review, the skills we’ve covered so far in the first two lectures are:

• Pseudocode



• Analyzing Runtime

• Asymptotic Notation (O,Ω,Θ)

• Induction

• Loop Invariants

• Increasing comfort with formal definitions, lemmas, etc.

I expect that these are all review so far except for loop invariants. If you need extra resources on
anything, feel free to ask!


