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Linear Programming III: More Duality

To take the dual: Label each primal constraint with a new dual variable. In our new linear pro-
gram, each dual constraint will correspond to a primal variable. For the left-hand side, count up
the appearances of this constraint’s primal variable (e.g., x1) in each of the primal constraints and
multiply them by the dual variable for those constraints. That is, if x1 appears 5 times (5x1) in
constraint for y1, then add 5y1 to x1’s constraint. Don’t forget to include its appearance in the
primal’s objective function, but this will be the right-hand side of the constraint. Finally, the dual
objective function is given by the right-hand side coefficients and their correspondence to the dual
variables via the constraints in the primal. (See above).

The following is the normal form for a maximization problem primal and its primal:

max cTx min yTb

subject to Ax ≤ b subject to ATy ≥ c

Example 3: Maximum Matching

Given a graph G = (V,E) choose a maximum size matching—a set of edges S such that no vertex
is covered by more than one edge.

Decision variables: xe indicating whether edge e is in the matching.

Primal Linear Program:

max
∑
e∈E

xe

subject to
∑
e:v∈e

xe ≤ 1 ∀v (vertex matched at most once) (yv)

xe ≥ 0 ∀e (non-negativity)

Taking the dual of the above primal, we get the following linear program:

What problem is this?



Weak Duality

Theorem 1. If x is feasible in (P) and y is feasible in (D) then cTx ≤ bTy.

Proof.

Give an upper bound on maximum matching:

Give a lower bound on vertex cover:



Complementary Slackness

max cTx min yTb

subject to Ax ≤ b subject to ATy ≥ c

or equivalently

Then complementary slackness says we must have at least one of


