DS 320 Algorithms for Data Science Spring 2022

Linear Programming III: More Duality

To take the dual: Label each primal constraint with a new dual variable. In our new linear program, each dual constraint will correspond to a primal variable. For the left-hand side, count up the appearances of this constraint's primal variable (e.g., x_1) in each of the primal constraints and multiply them by the dual variable for those constraints. That is, if x_1 appears 5 times ($5x_1$) in constraint for y_1 , then add $5y_1$ to x_1 's constraint. Don't forget to include its appearance in the primal's objective function, but this will be the right-hand side of the constraint. Finally, the dual objective function is given by the right-hand side coefficients and their correspondence to the dual variables via the constraints in the primal. (See above).

The following is the normal form for a maximization problem primal and its primal:

$$\begin{array}{ccc} \max & \mathbf{c}^T \mathbf{x} & \min & \mathbf{y}^T \mathbf{b} \\ \text{subject to} & \mathbf{A} \mathbf{x} \leq \mathbf{b} & \text{subject to} & \mathbf{A}^T \mathbf{y} \geq \mathbf{c} \end{array}$$

Example 3: Maximum Matching

Given a graph G = (V, E) choose a maximum size matching—a set of edges S such that no vertex is covered by more than one edge.

Decision variables: x_e indicating whether edge e is in the matching.

Primal Linear Program:

$$\begin{array}{ccc} \max & \sum_{e \in E} x_e \\ \text{subject to} & \sum_{e:v \in e} x_e \leq 1 \\ & x_e \geq 0 \end{array} & \forall v \quad (\text{vertex matched at most once}) \quad (y_v) \\ & \forall e \quad (\text{non-negativity}) \end{array}$$

Taking the dual of the above primal, we get the following linear program:

What problem is this?

Weak Duality

Theorem 1. If \mathbf{x} is feasible in (P) and \mathbf{y} is feasible in (D) then $\mathbf{c}^T \mathbf{x} \leq \mathbf{b}^T \mathbf{y}$.

Proof.

Give an upper bound on maximum matching:

Give a lower bound on vertex cover:

Complementary Slackness

max	$\mathbf{c}^T \mathbf{x}$	\min	$\mathbf{y}^T \mathbf{b}$
subject to	$\mathbf{A}\mathbf{x} \leq \mathbf{b}$	subject to	$\mathbf{A}^T\mathbf{y} \geq \mathbf{c}$

or equivalently

Then complementary slackness says we must have at least one of