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Linear Programming III: More Duality

To take the dual: Label each primal constraint with a new dual variable. In our new linear pro-
gram, each dual constraint will correspond to a primal variable. For the left-hand side, count up
the appearances of this constraint’s primal variable (e.g., x1) in each of the primal constraints and
multiply them by the dual variable for those constraints. That is, if x1 appears 5 times (5x1) in
constraint for y1, then add 5y1 to x1’s constraint. Don’t forget to include its appearance in the
primal’s objective function, but this will be the right-hand side of the constraint. Finally, the dual
objective function is given by the right-hand side coefficients and their correspondence to the dual
variables via the constraints in the primal. (See above).

The following is the normal form for a maximization problem primal and its primal:

max cTx min bTy

subject to Ax ≤ b subject to ATy ≥ c

Example 3: Maximum Matching

Given a graph G = (V,E) choose a maximum size matching—a set of edges S such that no vertex
is covered by more than one edge.

Decision variables: xe indicating whether edge e is in the matching.

Primal Linear Program:

max
∑
e∈E

xe

subject to
∑
e:v∈e

xe ≤ 1 ∀v (vertex matched at most once) (yv)

xe ≥ 0 ∀e (non-negativity)

Taking the dual of the above primal, we get the following linear program:

min
∑
v∈V

yv

subject to
∑
v∈e

yv ≥ 1 ∀e (edge covered) (xe)

yv ≥ 0 ∀v (non-negativity)

What problem is this? (Fractional) Vertex Cover!



Weak Duality

Theorem 1 (Weak Duality). If x is feasible in (P) and y is feasible in (D) then cTx ≤ bTy.

Proof.

cTx
1
≤ (ATy)x = yTAx

2
≤ yTb = bTy.

Where (1) follows by the dual constraints ATy ≥ c and (2) follows by the primal constraints
Ax ≤ b.

This theorem says that any feasible solution to the primal is a lower bound to any feasible solution
to the dual, and likewise, any feasible solution to the dual is an upper bound to the primal.

That is, fractional vertex cover gives an upper bound on how large the (fractional) maximum
matching can be, and likewise, fractional maximum matching gives a lower bound on how small
the minimum (fractional) vertex cover can be.

Theorem 2 (Strong Duality). A pair of solutions (x∗,y∗) are optimal for the primal and dual
respectively if and only if cTx = bTy.

The if direction is easy to see: we know that the dual gives an upper bound on the primal, so
if these objectives are equal, then the primal objective that we are trying to maximize could not
possible get any larger, as it’s always at most the dual’s objective. This is as tight as possible.

The only if direction is harder to prove, and we’ll skip it for now.

Complementary Slackness

max cTx min bTy

subject to Ax ≤ b subject to ATy ≥ c

or equivalently ∑
i

ajixi ≤ bj ∀j (yj)
∑
i

aijyi ≥ ci ∀i (xi)

Then complementary slackness says we must have at least one of∑
i

ajixi = bj or yj = 0 (1)
∑
i

aijyi = ci or xi = 0 (2)

holding for our solution to be optimal.

Theorem 3 (Complementary Slackness). A pair of solutions (x∗,y∗) are optimal for the primal
and dual respectively if and only if the above complementary slackness conditions (1) and (2) hold.

Proof. (⇒) According to complementary slackness, by rearranging our constraint, either
∑

i ajixi−
bj = 0 or yj = 0. This ensures that the multiplied quantity (

∑
i ajixi − bj) yj = 0, as one of the

two terms on the left-hand side must be 0. Then multiplying out and rearranging gives that



yj
∑

i ajixi = yjbj . This process with all rows gives the equality from complementary slackness
that yTAx = yTb.

Similarly, using the condition that
∑

i aijyi = ci or xi = 0 gives that cTx = (ATy)x.
Then following our inequalities in the proof of weak duality, they now all hold with equality, so

by Strong Duality, (x, y) are optimal solutions to the primal and dual.

cTx = (ATy)x = yTAx = yTb = bTy.

(⇐) Similarly, if Strong Duality holds, the above inequalities hold with equality, in which case
it must be that yj

∑
i ajixi = yjbj for all j and

∑
i aijyixi = cixi for all i, and hence that either∑

i ajixi − bj = 0 or yj = 0 for all j and that either
∑

i aijyi = ci or xi = 0 for all i.


