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Zero-Sum Games and the Minimax Theorem

Consider the game Rock-Paper-Scissors, where as usual, paper covers rock, scissors cuts paper,
and rock breaks scissors (that is: the former beats the latter in the comparison). In a face-off, the
winner earns +1 and the loser earns -1. If two of the same type face each other, then there is a tie,
and both earn 0.

The matrix below shows the game of Rock-Paper Scissors depicted as a zero-sum-game. Sup-
pose that brothers Ron and Charlie Weasley are facing off. Each brother must choose a strategy.
In the language of the payoff matrix below, Ron is the row player, and he must choose a row to
play as his strategy. Similarly, Charlie is the column player and he just choose which column to
play. If Ron chooses row i and Charlie chooses column j, then the payoff to Ron will be aij , and
the payoff to Charlie will be −aij , hence the term “zero-sum.” Thus, the row and column players
prefer bigger and smaller numbers, respectively.

Rock Paper Scissors

Rock 0 -1 1

Paper 1 0 -1

Scissors -1 1 0

Order of Turns

• Typically, RPS is played by both players simultaneously choosing their strategies.

• But what if I made you go first? That’s obviously unfair—whatever you do, I can respond
with the winning move.

• Now what if I only forced you to commit to a probability distribution over rock, paper, and
scissors? (Then I respond choosing a strategy, and then nature flips coins on your behalf.)

You can protect yourself by randomizing uniformly among the three options—then, no matter
what I do, I’m equally likely to win, lose, or tie.

The minimax theorem states that, in general games of “pure competition,” a player moving first
can always protect herself by randomizing appropriately.

The Minimax Theorem

Notation:

• m×n payoff matrix A—aij is the row player’s payoff for outcome (i, j) when row player plays
strategy i and column player plays strategy j

• mixed row strategy x (a distribution over rows)



• mixed column strategy y (a distribution over columns)

Expected payoff of the row player:

m∑
i=1

n∑
j=1

Pr[outcome (i, j)] aij =

m∑
i=1

n∑
j=1

Pr[row i chosen]︸ ︷︷ ︸
=xi

Pr[column j chosen]︸ ︷︷ ︸
=yj

aij

= xTAy

The minimax theorem is the amazing statement that turn order doesn’t matter.

Theorem 1 (Minimax Theorem). For every two-player zero-sum game A,

max
x

(
min
y

xTAy

)
= min

y

(
max
x

xTAy
)
. (1)

On the left, the row player goes first, choosing a strategy to maximize their payoff and protect
against the fact that the column player goes second and adapts to their strategy. The right is the
opposite situation. The value of the game (value that both sides will equal) is 0 in this case: the
first player will play randomly and the second will respond arbitrarily.

From LP Duality to Minimax

This is not the original or only argument, but we will now derive Theorem 1 from LP duality
arguments. The first step is to formalize the problem of computing the best strategy for the player
forced to go first.

Two issues: (1) the nested min/max, and (2) the quadratic (nonlinear) character of xTAy in
the decision variables x, y.

Observation 2. The second player never needs to randomize. If the row player goes first and
chooses any distribution x, the column player can then simply compute the expected payoff (with
respect to x) of each column and choose the best.

In math, we have argued that

max
x

(
min
y

xTAy

)
= max

x

(
n

min
j=1

xTAej

)
(2)

= max
x

(
n

min
j=1

m∑
i=1

aijxi

)
(3)

where ej is the jth standard basis vector, corresponding to the column player deterministically
choosing column j.

We’ve solved one of our problems by getting rid of y. But there is still the nested max/min.



Specifically, we introduce a decision variable v, intended to be equal to (2), and

max v

subject to

v −
m∑
i=1

aijxi ≤ 0 for all j = 1, . . . , n

m∑
i=1

xi = 1

x1, . . . , xm ≥ 0 and v ∈ R.

Note that this is a linear program. Rewriting the constraints in the form

v ≤
m∑
i=1

aijxi for all j = 1, . . . , n

makes it clear that they force v to be at most minn
j=1

∑m
i=1 aijxi.

If (v∗,x∗) is an optimal solution, then v∗ = minn
j=1

∑m
i=1 aijxi. By feasibility, v∗ cannot be larger

than minn
j=1

∑m
i=1 aijx

∗
i . If it were strictly less, then we can increase v∗ slightly without destroying

feasibility, yielding a better feasible solution (contradicting optimality).

Since the linear program explicitly maximizes v over all distributions x, its optimal objective
function value is

v∗ = max
x

(
n

min
j=1

xTAej

)
= max

x

(
min
y

xTAy

)
(4)

Now, we do the same thing for the column player, where the column player moves first:

minw

subject to

w −
n∑

j=1

aijyj ≥ 0 for all i = 1, . . . ,m

n∑
j=1

yj = 1

y1, . . . , yn ≥ 0 and w ∈ R.

At an optimal solution (w∗,y∗), y∗ is the optimal strategy for the column player (when going first,
assuming optimal play by the row player) and

w∗ = min
y

(
m

max
i=1

eTi Ay

)
= min

y

(
max
x

xTAy
)

(5)



These two linear programs are duals! For example, the one unrestricted variable (v or w) corre-
sponds to the one equality constraint in the other linear program (

∑n
j=1 yj = 1 or

∑m
i=1 xi = 1,

respectively). The n x variables correspond to the remaining dual constraints, and the m y vari-
ables correspond to the remaining primal constraints. Then strong duality implies that v∗ = w∗;
in light of (4) and (5), the minimax theorem follows directly.

Online Learning and the Multiplicative Weights Algorithm

Think back to when we learned about caching or job scheduling. We always assumed that we knew
everything that was coming in advance and could make decisions about the future. What if we
couldn’t see the future? This is called an online setting, not like the internet, but as if the input
is waiting on line.

An Online Problem

1. The input arrives “one piece at a time.”

2. An algorithm makes an irrevocable decision each time it receives a new piece of the input.

Now, for an Online Decision-Making Problem, we should consider the event when you have a bunch
of experts advising you on the stocks or the weather, and you have to choose one to trust each day.
Or, equivalently, a bunch of actions you could take. Each day (or time step), you get to see how
right or wrong the experts are—they are assigned some reward (or loss) by an adversary. Your goal
is to come up with a strategy of how to choose experts as time goes on such that, after you choose
your strategy for each successive time step, the adversary assigns rewards, and you get the best
rewards (or minimal losses) possible. The adversary knows your (possibly randomized) strategy,
but does not see the result of the randomness until after assignment rewards.

Online Decision-Making

At each time step t = 1, 2, . . . , T :

a decision-maker picks a probability distribution pt over her experts or actions A

an adversary picks a reward vector rt : A→ [−1, 1]

an action at is chosen according to the distribution pt, and the decision-maker receives
reward rt(at)

the decision-maker learns rt, the entire reward vector

The input arrives “one piece at a time.”



What should we compare to?

Thus far, we’ve been trying to achieve optimal solutions, or comparing to optimal solutions assuming
we know full information about the future and what is optimal. Does that still make sense?

Example 1 (Comparing to the Best Action Sequence). Suppose your set of experts (or actions)
is A = {1, 2}. Each day t, the adversary chooses the reward vector rt as follows: if the algorithm
chooses a distribution pt for which the probability on action 1 is at least 1

2 , then rt is set to the
vector (−1, 1). Otherwise, the adversary sets rt equal to (1,−1).

This adversary forces the expected reward of the algorithm to be nonpositive, while ensuring
that the reward of the best action sequence in hindsight is T . Thus, the algorithm’s approximation
is x/T where x ≤ 0—no approximation at all.

Example 1 tells us that we should not be trying to compare to the Best Action Sequence—this
is too strong of a goal. Instead, we compare it to the reward incurred by the best fixed action in
hindsight. In words, we change our benchmark from

T∑
i=1

N
max
i=1

rti to
N

max
i=1

T∑
i=1

rti .

Definition 1 (Regret). Fix reward vectors r1, . . . , rT . The regret of the action sequence a1, . . . , aT

is

N
max
i=1

T∑
t=1

rti︸ ︷︷ ︸
best fixed action

−
T∑
t=1

rt(at)︸ ︷︷ ︸
our algorithm

. (6)

We’d like an online decision-making algorithm that achieves low regret, as close to 0 as possible
(and negative regret would be even better). Notice that the worst-possible regret in 2T (since
rewards lie in [−1, 1]). We think of regret Ω(T ) as an epic fail for an algorithm. What is the
justification for the benchmark of the best fixed action in hindsight? First, simple and natural
learning algorithms can compete with this benchmark. Second, achieving this is non-trivial: as the
following examples make clear, some ingenuity is required. Third, competing with this benchmark
is already sufficient to obtain many interesting applications (see end of this lecture and all of next
lecture).

The Multiplicative Weights Algorithm

No-Regret Algorithm Design Principles

1. Past performance of actions should guide which action is chosen at each time step, with
the probability of choosing an action increasing in its cumulative reward. (Recall that we
need a randomized algorithm to have any chance.)

2. The probability of choosing a poorly performing action should decrease at an exponential
rate.



The first principle is essential for obtaining regret sublinear in T , and the second for optimal regret
bounds.

The MW algorithm maintains a weight, intuitively a “credibility,” for each action. At each time
step the algorithm chooses an action with probability proportional to its current weight. The weight
of each action evolves over time according to the action’s past performance.


