
DS 320 Algorithms for Data Science Lecture #22
Spring 2022 Prof. Kira Goldner

Online Learning and the Multiplicative Weights Algorithm

Think back to when we learned about caching or job scheduling. We always assumed that we knew
everything that was coming in advance and could make decisions about the future. What if we
couldn’t see the future? This is called an online setting, not like the internet, but as if the input
is waiting on line.

An Online Problem

1. The input arrives “one piece at a time.”

2. An algorithm makes an irrevocable decision each time it receives a new piece of the input.

Now, for an Online Decision-Making Problem, we should consider the event when you have a bunch
of experts advising you on the stocks or the weather, and you have to choose one to trust each day.
Or, equivalently, a bunch of actions you could take. Each day (or time step), you get to see how
right or wrong the experts are—they are assigned some loss (or loss) by an adversary. Your goal
is to come up with a strategy of how to choose experts as time goes on such that, after you choose
your strategy for each successive time step, the adversary assigns losses, and you get the best losses
(or minimal losses) possible. The adversary knows your (possibly randomized) strategy, but does
not see the result of the randomness until after assignment losses.

Online Decision-Making

At each time step t = 1, 2, . . . , T :

a decision-maker picks a probability distribution pt over her experts or actions i =
1, . . . , N

an adversary picks a loss vector `t : A→ [−1, 1]

an action it is chosen according to the distribution pt, and the decision-maker receives
loss `ti

the decision-maker learns `t, the entire loss vector

The input arrives “one piece at a time.”



What should we compare to?

Thus far, we’ve been trying to achieve optimal solutions, or comparing to optimal solutions assuming
we know full information about the future and what is optimal. Does that still make sense?

Example 1 (Comparing to the Best Action Sequence). Suppose your set of experts (or actions) is
A = {1, 2}. Each day t, the adversary chooses the loss vector `t as follows: if the algorithm chooses
a distribution pt for which the probability on action 1 is at least 1

2 , then `t is set to the vector
(1, 1). Otherwise, the adversary sets `t equal to (1,−1).

This adversary forces the expected loss of the algorithm to be nonpositive, while ensuring that
the loss of the best action sequence in hindsight is T . Thus, the algorithm’s approximation is x/T
where x ≤ 0—no approximation at all.

Example 1 tells us that we should not be trying to compare to the Best Action Sequence—this
is too strong of a goal. Instead, we compare it to the loss incurred by the best fixed action in
hindsight. In words, we change our benchmark from

T∑
i=1

N
min
i=1

`ti to
N

min
i=1

T∑
i=1

`ti.

Definition 1 (Regret). Fix loss1 vectors `1, . . . , `T . The regret of the action sequence a1, . . . , aT is

T∑
t=1

`t(at)︸ ︷︷ ︸
our algorithm

−
N

min
i=1

T∑
t=1

`ti︸ ︷︷ ︸
best fixed action

. (1)

The total loss of expert i is LT
i =

∑T
t=1 `

t
i, and the total loss of the algorithm is LT

A =
∑T

t=1 `
t
A.

The goal of the algorithm is to obtain loss not much worse than that of the best expert: mini L
T
i .

We’d like an online decision-making algorithm that achieves low regret, as close to 0 as possible
(and negative regret would be even better). Notice that the worst-possible regret in T (since losses
lie in [0, 1]). We think of regret Ω(T ) as an epic fail for an algorithm. What is the justification for
the benchmark of the best fixed action in hindsight? First, simple and natural learning algorithms
can compete with this benchmark. Second, achieving this is non-trivial: as the following examples
make clear, some ingenuity is required. Third, competing with this benchmark is already sufficient
to obtain many interesting applications (see end of this lecture and all of next lecture).

One natural online decision-making algorithm is follow-the-leader, which at time step t chooses
the action a with minimum cumulative loss

∑t−1
u=1 `

u
i so far. The next example shows that follow-

the-leader, and more generally every deterministic algorithm, can have regret that grows linearly
with T .

Example 2 (Randomization Is Necessary for No Regret). Fix a deterministic online decision-
making algorithm. At each time step t, the algorithm commits to a single action at. The obvious
strategy for the adversary is to set the loss of action at to 1, and the loss of every other action

1Note that for the rewards setting, the definition of regret would instead be maxN
i=1

∑T
t=1 r

t
i −

∑T
t=1 r

t(at), still
minimizing the difference between the algorithm and the best fixed action, but now the maximum reward for the
best fixed action will be larger than the algorithm instead of the minimum loss being smaller.



to 0. Then, the cumulative loss of the algorithm is 1 while the cumulative loss of the best action
in hindsight is at least T (1 − 1

n). Even when there are only 2 actions, for arbitrarily large T , the
worst-case regret of the algorithm is at least T

2 .

For randomized algorithms, the next example limits the rate at which regret can vanish as the
time horizon T grows.

Example 3 (
√

(lnn)/T Regret Lower Bound). Suppose there are n = 2 actions, and that we
choose each loss vector `t independently and equally likely to be (0, 1) or (1, 0). No matter how
smart or dumb an online decision-making algorithm is, with respect to this random choice of loss
vectors, its expected loss at each time step is exactly 1

2 and its expected cumulative loss is thus T
2 .

The expected cumulative loss of the best fixed action in hindsight is b
√
T , where b is some constant

independent of T . This follows from the fact that if a fair coin is flipped T times, then the expected
number of heads is T

2 and the standard deviation is 1
2

√
T .

Fix an online decision-making algorithm A. A random choice of loss vectors causes A to
experience expected regret at least b

√
T , where the expectation is over both the random choice of

loss vectors and the action realizations. At least one choice of loss vectors induces an adversary that
causes A to have expected regret at least b

√
T , where the expectation is over the action realizations.

A similar argument shows that, with n actions, the expected regret of an online decision-making
algorithm cannot grow more slowly than b

√
T lnn, where b > 0 is some constant independent of n

and T .

The Multiplicative Weights Algorithm

Multiplicative Weights (MW) Algorithm

initialize weights w1
i = 1 for every expert i = 1 . . . , N

for each time step t = 1, 2, . . . , T do

let W t =
∑N

i=1 w
t
k be the sum of the weights

choose expert k with probability ptk = wt
k/W

t

for each expert k, update weights

wt+1
k = wt

k · (1− ε `tk)

Formally, we want an algorithm that works in the following framework:

1. In rounds 1, . . . , T , the algorithm chooses some expert it.

2. Each expert i experiences a loss `ti ∈ [0, 1]. The algorithm experiences the loss of the expert
it chooses: `tA = `tit .



3. The total loss of expert i is LT
i =

∑T
t=1 `

t
i, and the total loss of the algorithm is Ep [LMWU ] =

Ep

[∑T
t=1 `

t
it

]
. The goal of the algorithm is to obtain loss not much worse than that of the

best expert: mini L
T
i .

Theorem 1. For any sequence of losses, over the randomness of our algorithmic choices p,

Ep[RegretMWU] ≤ 2
√

ln(N)T + εT.

That is, for any expert k

1

T
Ep

[
T∑
t=1

`tit

]
≤ 1

T

[
T∑
t=1

`tk

]
+ ε +

ln(N)

ε · T

In particular, by setting ε =

√
ln(N)
T we get:

1

T
Ep

[
T∑
t=1

`tit

]
− 1

T

[
min
i=1

T∑
t=1

`ti

]
≤ ε + 2

√
ln(N)

T
.

In other words, the average loss of the algorithm quickly approaches the average loss of the best
expert exactly, at a rate of 1/

√
T . Note that this works against an arbitrary sequence of losses,

which might be chosen adaptively by an adversary. This is pretty incredible. And it will be the
source of the power of this framework in applications: we (the algorithm designer) can play the
role of the adversary to get the results that we want.

Corollary 2. There is an online decision-making algorithm that, for every adversary and ε > 0,
has expected time-averaged regret2 at most ε after at most (4 lnn)/ε2 time steps.

Recap of notation:

• N : the number of experts (actions)

• i, k: index of a specific expert (action)

• w: weights assigned to experts, a vector for each expert, indexed for each time step t and
expert i

• W t: the sum over all experts of weights at time t—W t =
∑N

i=1 w
t
i .

• p: a probability distribution over experts, indexed for each time step t and expert i, equal to
weights w normalized by the sum W—pti = wt

i/W
t.

• ε: update parameter

• `: adversary’s loss assignments for each time step and expert, `ti ∈ [0, 1].

• F : expected loss. F t =
∑N

i=1 p
t
i`

t
i.

2Time-averaged regret just means the regret, divided by T .



Proof. Let F t denote the expected loss of the MWU algorithm at time t. By linearity of expectation,
we have E[LT

MWU ] =
∑T

t=1 F
t. We also know that:

F t =
N∑
i=1

pti · `ti =
N∑
i=1

wt
i

W t
· `ti. (2)

Thus we want to lower bound the sum of the F t’s.
How does W t change between rounds? We know that W 1 = N , and looking at the algorithm,

we derive W t+1 as a function of W t and the expected loss (2)

W t+1 =
N∑
i=1

wt+1
i

=
N∑
i=1

wt
i · (1− ε`ti)

= W t(1− εF t).

So by induction, we can write:

W T+1 = W 1︸︷︷︸
=N

T∏
t=1

(1− εF t).

Taking the log, and using the fact that ln(1− x) ≤ −x, we can write:

ln(W T+1) = ln(N) +
T∑
t=1

ln(1− εF t) ln(ab) = ln(a) + ln(b)

≤ ln(N)− ε
T∑
t=1

F t let εF t = x

= ln(N)− εE[LT
MWU ]

Similarly, we can unroll the update rule for our weights

wt+1
k = wt

k · (1− ε `tk) =⇒ wT+1
k := w1

i︸︷︷︸
=1

T∏
t=1

(1− ε`ti) (3)

(using the fact that ln(1− x) ≥ −x− x2 for 0 < x < 1
2), we know that for every expert k:

ln(W T+1) ≥ ln(wT+1
k ) W T+1 =

N∑
i=1

wT+1
i ≥ wT+1

k

=

T∑
t=1

ln(1− ε`tk) by (3)

≥
T∑
t=1

ε`tk −
T∑
t=1

(ε`tk)2 let ε`tk = x

≥ −εLT
k − ε2T



Combining these two bounds, we get that for all k:

ln(N)− εE[LT
MWU ] ≥ −εLT

k − ε2T

for all k. Dividing by ε and rearranging, we get:

E[LT
MWU ] ≤ min

k
LT
k + εT +

ln(N)

ε
.


