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Stable Matching

Today we’ll consider a problem faced in practice all the time—the stable matching problem. Its
algorithmic solution is a real “killer app,” and a way to see how much impact an elegant algorith-
mic solution can have in practice. Mass General Shapley and Alvin Roth won the Nobel Prize in
Economics in 2012 for the Gale-Shapley algorithm and their work on applying it in practice.

One real-world application has to do with the National Resident Matching Program. Every year,
doctors graduating from medical school, who seek hospitals to work at to continue their training,
are matched with hospitals who seek doctors to employ. Doctors have preferences over which hos-
pitals they want to work at, and hospitals have preferences over which doctors they hire.

Any setting matching two sides that both have preferences falls into this scenario. Other applica-
tions include: college admissions, other worker-job matchings (especially in online labor markets),
the school choice problem where public school students apply to various high schools in the city and
those schools also have preferences over which students they admit, and even web content delivery,
where one side requests web content and the other is servers with preferences over which customers
they serve.

For now, we’ll simplify the problem to pretend that each hospital hires exactly one doctor—we’re
looking for a perfect matching—but it’s easy to modify the scenario to handle hospitals hiring mul-
tiple doctors, schools admitting multiple students, etc.

Consider a set of n doctors D = {d1, . . . , dn}, and a set of n hospitals H = {h1, . . . , hn}. Let
D ×H denote the set of all possible ordered pairs of the form (d, h), where d ∈ D and h ∈ H. A
matching M is a set of ordered pairs, each from D ×H, with that property that each member of
D and each member of H appears in at most one pair in M . A perfect matching M ′ is a matching
with the property that each member of D and each member of H appears in exactly one pair in M ′.

Now we can add the notion of preferences to this setting. Each doctor d ∈ D ranks all the hospitals;
we will say that d prefers h to h′ if d ranks h higher than h′. We will refer to the ordered ranking of
d as their preference list. We will not allow ties in the ranking. Each hospital, analogously, ranks
all the doctors.

The problem that used to happen with the NRMP Match is that they would release all of the
results—this doctor is matched with this hospital—and then some doctor and hospital would real-
ize that they would prefer to contract with each other than their assigned matches. They would call
each other up and make alternative arrangements, throwing away the proposed matching. Formally,
some pairs (d, h), (d′, h′) would be proposed in the matching, but

h′ �d h and d �h′ d′,



that is, doctor d prefers h′ to h, and hospital h′ prefers d to d′, so doctor d and hospital h′ would
prefer to deviate from the assignment and form a pair together as (d, h′). We call such a pair that
prefers one another to their assigned partners a blocking pair.

A matching M is stable if and only if it has no blocking pairs. We will to come up with an
algorithm to find a stable matching.

Basic ideas:

• Initially, everyone is unmatched. Suppose an unmatched hospital h chooses the doctor d who
ranks highest on their preference list and “proposes” to them, offering them a job. Can we
declare immediately that (d, h) will be one of the pairs in our final stable matching? Not
necessarily: at some point in the future, a hospital h′ whom d prefers may propose to them.
On the other hand, it would be dangerous for d to reject h right away; they may never receive
an offer from a hospital they rank as highly as h. So a natural idea would be to have d
tentatively accept. Mirroring marriage terms, we say the pair (d, h) enters an engagement.

• Suppose we are now at a state in which some doctors and hospitals are free—not engaged—
and some are engaged. The next step could look like this. An arbitrary free hospital h chooses
the highest-ranked doctor d to whom they have not yet proposed, and they proposes to d. If
d is also free, then h and d become engaged. Otherwise, d is already engaged to some other
hospital h′. In this case, d determines which of h or h′ ranks higher on their preference list;
this hospital becomes engaged to d and the other becomes free.

• Finally, the algorithm will terminate when no one is free; at this moment, all engagements
are declared final, and the resulting perfect matching is returned.

The hospital-proposing Gale-Shapley (Deferred Acceptance) algorithm:

1. Each hospital “proposes” to their favorite doctor on their list.

2. Each doctor who receives at least one proposal “gets engaged” to the hospital they prefer
among those who propose; “rejects” the rest. Doctors with no proposals do nothing.

3. If no hospital is rejected, stop. Finalize the engagements into the stable matching. Otherwise,
rejected hospitals cross the name of the doctor who rejected them off their list and then
propose to the favorite among those remaining.

4. Return to Step 2.

List all of your observations about the algorithm here (think: loop invariants):

• Every doctor d remains engaged from the point at which they receive their first proposal; and
the sequence of partners to which they are engaged gets better and better (in terms of their
preference list).

• The sequence of doctors to whom h proposes gets worse and worse (in terms of his preference
list). However, when matched, they are engaged to whomever they most prefer out of those
that will accept them.



• If h is free at some point in the execution of the algorithm, then there is a doctor to whom
they have not yet proposed.

Claim 1. The Gale-Shapley algorithm returns a stable matching.

Proof. A stable matching is a perfect matching with no blocking pairs.
To see that GS returns a perfect matching, observe that we terminate when there are no free

hospitals. By our third observation, if there is a free hospital, then there is a free doctor it has not
proposed to, and a free doctor always tentatively accepts, just as a free doctor always proposes,
hence they would match.

To see that GS returns a matching with no blocking pairs, suppose that (h, d) is a blocking
pair—they are not matched to each other in the returned matching but prefer one another to their
given match. There are two cases.

Case 1: In the execution of GS, h proposed to d. Then for (h, d) to not be matched, it must be
that d rejected h for some preferred proposal/engagement, and by the second observation, one d
is engaged, d stays engaged to hospitals of increasing preference, thus d must be engaged to some
h′ �d h, and (h, d) cannot be a blocking pair.

Case 2: In the execution of GS, h never proposed to d. Because h proposed in decreasing order
on his preference list until they are matched, then h didn’t propose because they got and stayed
engaged to some other doctor d′ �h d that h preferred. Thus (h, d) cannot be a blocking pair.

In both cases, we have a contradiction, hence GS returns a stable matching.

Claim 2. The Gale-Shapley algorithm terminates in time O(n2).

Proof. Each hospital proposes to each doctor at most once, and thus proposes to at most n doctors.
There are n hospitals, so there are at most O(n2) proposals.

Claim 3. The hospital-proposing algorithm returns the hospital-optimal stable matching. (Each
hospital is matched to their best eligible partner.)

Proof. We call a partner d eligible for h if there exists some stable matching M ′ in which (d, h) are
partners. Suppose, seeking a contradiction, that Gale-Shapley with hospitals proposing returns a
matching which is not hospital-optimal, that is, some hospital is not paired with its best eligible
partner.

Consider the first time that some hospital h is rejected by an eligible partner d. In order to
reject, d must have another offer from some h′ �d h which they prefer. Consider the stable matching
M that pairs (h, d), and let d′ be the partner of h′ in that matching.

Because h was the first hospital rejected by an eligible partner when d rejected it, then h′ has
not been rejected by an eligible partner at this point. That is, d �h′ d′, as h′ has proposed to d at
this point, and there is some matching in which (h′, d′) are matched, so d′ is an eligible partner and
has yet to reject h′ (and therefore be proposed to). But in that case, M is not a stable matching,
as (h′, d) would be a blocking pair, so this is a contradiction.

Claim 4. The hospital-proposing algorithm returns the doctor-pessimal stable matching. (Each
doctor is matched to their worst eligible partner.)

Proof. Suppose in Gale-Shapley that there is a pair (h, d), but h is not the worst eligible partner
for d. The, there exists a stable matching M with pair (h′, d) where h′ ≺d h. Let d′ be the partner
of h′ in M . By Claim 3, the GS matching is hospital-optimal, so d �h d′. Hence h and d prefer
each other to their partners in M . M is thus not stable, and we have a contradiction.



Other fun topics about Stable Matching

• There are many different stable matchings! Hospitals get worse preferences and doctors get
better. . . what’s a fair stable matching?

• How many stable matchings are there? Can we bound them? Lots of research here! [7]

• The different stable matchings give a set of doctors and hospitals and their preferences form
an incredible lattice structure. [6]

• Other algorithms for obtaining different stable matchings. [3, 1]

• What if preferences aren’t fully known, how many interviews do we need to conduct? What
if preferences are random? [10, 2, 4]

• This algorithm is “strategyproof” or “truthful”—one cannot reorder their preferences to get
a better match. But is there anything else they could do? Truncate their preferences? (Yes!
[5]) Form a coalition? (Yes! [9])

• Even though it’s strategyproof and pretty easy to explain as such, there’s evidence of people
irrationally listing missorted preferences in practice (in really obvious ways—“I prefer BU
without a scholarship to BU with a scholarship”). This sparked a new direction of research
on “obviously strategyproof” algorithms. [8]
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