DS 320 Algorithms for Data Science Lecture #24
Spring 2022 Prof. Kira Goldner

Approximation Algorithms: Randomized and Online

So far, we’ve been sure to always analyze runtime and often space as well. Another thing that we
can add to our tradeoff is optimality.

Definition 1 (Approximation guarantee). We say that an algorithm obtains an a-approzimation
to a maximization problem if in the worst case, the algorithm obtains at least ALG > o OPT for
aec(0,1).

Similarly, for a minimization problem, an algorithm obtains an a-approximation for @ > 1 if
the algorithm’s cost is at most ALG < « OPT.

Many times, it’s useful to use randomness in our algorithm—to beat an adversary, or just because
random choices do a good job of handling all of the different instances out there with some proba-
bility each. We give our guarantees in expectation over the randomness in the algorithm, i.e., for a
maximization problem, we might say

E,[ALG] > acvOPT

where p represents the random choices in the algorithm.

Sometimes, it is our input instance I that is random, in which case, we compare how both our
algorithm do and how opPTdoes in expectation over the random input that arrives, so we might
prove a guarantee like

E;[ALG] > aE[opPT].

Two probability essential facts to recall:

e Linearity of expectation: For any random variables X, x; and constants ¢; such that X =
>, cixy, regardless of whether or not the z;’s are independent, E[X] = . E[xz;]. (This is not
true for things like variance.)

e For a boolean (0/1) random variable x that is 1 with probability p, the expectation of x is

E[z] = p.

Randomized Algorithms
MAX SAT

Recall the definition of the 3-SAT problem: given a logical formula of n boolean variables x1, ..., xy
in congunctive normal form (CNF), that is,

d=Ci A AChp

where C; is one of m clauses each consisting of 3 disjoint literals, which are variables in either their
positive or negative form, for example, perhaps

Cq = (.21?1 V X2 \/fg).
The goal of 3-SAT is to determine whether the formula ¢ can be satisfied.

Today, we look at the MAX SAT problem: very similar to 3-SAT, except that (1) each clause
C; may consist of any number of literals, and (2) rather than satisfy ¢, our objective is to satisfy
as many clauses C; as possible. (Of course, if we satisfy all m clauses, then we satisfy ¢.)

For our algorithm, we’ll try the simplest possible idea: set each boolean variable to true or false
with equal probability. This is the most basic idea in randomized algorithms, and often times, it’s
actually enough, as we’ll see today! In linear programs, we often had a {0, 1} decision variable—
true or false, take or don’t take into a set, something like this. For these variables, the idea of “set
to 1 with probability %” (and thus to 0 with equal probability) often works!

Algorithm: Independently for all 4, set

True w.p. 1/2
T =
’ False w.p. 1/2

Theorem 1. This algorithm gives a %—approm’mation to OPT for MAX SAT.

Proof. Let Y; be a random variable that is 1 if clause j is satisfied and 0 otherwise. Let W be a
random variable that is equal to the total weight of the satisfied clauses, so that W = Z;”zl w;Yj.
Let opTdenote the optimum value of the MAX SAT instance. Then, by linearity of expectation,
and the definition of the expectation of a 0-1 random variable, we know that

E[W] = Z w;EY;] = Z wjPrclause C; satisfied].
j=1 j=1

For each clause Cj, j + 1,...,n, the probability that it is not satisfied is the probability that each
positive literal in C} is set to false and each negative literal in Cj is set to true, each of which
happens with probability 1/2 independently; hence

1\%\ _1
Pr[clause Cj satisfied] — | 1 — <2> > 3

where the last inequality is a consequence of the fact that [; > 1. Hence,
1 & 1

where the last inequality follows from the fact that to the total weight is an easy upper bound on
the optimal value, since each weight is assumed to be nonnegative. O

Observe that if [; > k for each clause j, then the analysis above shows that the algorithm is

a <1 — (%)k>—approximation algorithm for such instances. Thus the performance of the algorithm

is better on MAX SAT instances consisting of long clauses. This observation will be useful to us
later on.

Although this seems like a pretty naive algorithm, a hardness theorem shows that this is the
best that can be done in some cases. Consider the case in which [; = 3 for all clauses j—that
is, the MAX 3SAT problem. The analysis above shows that the randomized algorithm gives an
approximation algorithm with performance guarantee (1 — (%)3> = %. A truly remarkable result

shows that nothing better is possible for these instances unless P = NP.

Theorem 2. If there is an (% +¢)-approximation algorithm for MAX 3SAT for any constant e > 0,
then P = NP.

MAX CUT

In the maximum cut problem (MAX CUT), the input is an undirected graph G = (V| E), along
with a nonnegative weight w;; > 0 for each edge (i,j) € E. The goal is to partition the vertex set
into two parts, U and W =V \ U, so as to maximize the weight of the edges whose two endpoints
are in different parts, one in U and one in W. We say that an edge with endpoints in both U and
W is in the cut. In the case w;; = 1 for each edge (4,j) € E, we have an unweighted MAX CUT
problem.

It is easy to give a %—approximation algorithm for the MAX CUT problem along the same
lines as the previous randomized algorithm for MAX SAT. Here we place each vertex v € V into
U independently with probability 1/2. As with the MAX SAT algorithm, this can be viewed as
sampling a solution uniformly from the space of all possible solutions.

Theorem 3. If we place each vertex v € V into U independently with probability 1/2, then we
obtain a randomized %-appmximation algorithm for the mazximum cut problem.

Proof. Consider a random variable X;; that is 1 if the edge (,7) is in the cut, and 0 otherwise. Let
Z be the random variable equal to the total weight of edges in the cut, so that Z = Z(m’)EE w;; Xij.
Let opTdenote the optimal value of the maximum cut instance. Then, as before, by linearity of
expectation and the definition of expectation of a 0-1 random variable, we get that

E[Z] = Z wi; E[XG;] = Z w;;Pr[Edge (i,) in cut].
(i.9)eE (i.4)eE

In this case, the probability that a specific edge (7,) is in the cut is easy to calculate: since the
two endpoints are placed in the sets independently, they are in different sets with probability equal
to % Hence,
1 1
E[Z] = 5 Z Wi > §OIZ’T7
(i,7)EE

where the inequality follows directly from the fact that the sum of the (nonnegative) weights of all
edges is obviously an upper bound on the weight of the edges in an optimal cut. O

Online Algorithms

The Ski Rental Problem

You're picking up a new hobby of skiing—you think. Every time that you rent skis, It costs $100
and B-hundred dollars to buy skis (that is, we can think in units of hundreds of dollars). Maybe
it’ll be a lifelong hobby and you should invest that B up front, or maybe it’s better to pay 1 each
time in case it doesn’t stick. Given that you don’t know how many times you'll go skiing (say,
some adversary decides whether you like it or not based on whether you purchase or not—isn’t
that how it always feels?), how should you decide whether to buy or not so that you can give some
guarantee?

Definition 2 (Competitive ratio). In an online setting, for a maximization problem, we say the
competitive ratio of an algorithm is « if the algorithm obtains at least a-fraction of the offfine
full-information optimum OPT, that is,

ALG
COMPETITIVE RATIO = — > «
OPT

And for a minimization problem, the algorithm obtains at most a-times the offline oPT: ALG <
a OPT —:

AvLc
COMPETITIVE RATIO = — < «
OPT
Essentially, the competitive ratio is just the approximation guarantee in an online setting.

Online algorithm for Ski Rental: Rent at first; buy the skis on day B + 1.

Proof that comp ratio is 2: Let T be the length of the season.
e If T < B, then both oPT and ALG pay T, so comp ratio is 1.
e If 7> B, then OPT pays B on day 1, and CRis (B+ B)/B = 2.

Lower Bound of 2: As soon as the algorithm buys the skis, stop the season. Alg buys on day =+ 1,
then alg pays z + B, and OPT pays at most B. The competitive ration is (x + B)/B = 2 when
r=B.

