
DS 320 Algorithms for Data Science Divide and Conquer

Main Steps

There are four main steps for a divide and conquer solution.

Step 1: Define your recursive sub-problem. Describe in English what your sub-problem means,
what its parameters are, and anything else necessary to understand it.

Step 2: Define your base cases. Your recursive algorithm has base cases, and you should state
what they are.

Step 3: Present your recursive cases. Give a mathematical definition of your sub-problem in
terms of “smaller” sub-problems. Make sure your recursive call uses the same number and
type of parameters as in your original definition.

Step 4: Prove correctness. This will be an inductive proof that your algorithm does what it is
supposed to. You should start by arguing that your base cases return the correct result, then
for the inductive step, argue why your recursive cases combine to solve the overall problem.

Step 5: Prove running time. This is especially important for divide and conquer solutions, as
there is usually an efficient brute-force solution, and the point of the question is to find
something more efficient than brute-force.



Example: Mergesort

We define a recursive algorithm that, given a list A of elements as well as left and right indices lo
and hi, returns the elements A[lo], . . . , A[hi] in non-decreasing sorted order.

mergesort(Elements[] A, lo, hi )

if lo = hi, i.e. |A| = 1 then
return the list of one element, i.e. A[lo]

Find midpoint of current list of elements, i.e. mid = b(lo + hi)/2c
Recursively run algorithm on left half, i.e. L = mergesort(A, lo, mid)
Recursively run algorithm on right half, i.e. R = mergesort(A, mid + 1, hi)
Merge L and R into a single list S in linear time:
while both L and R are non-empty do

let frontL and frontR denote the front elements of L and R, respectively.
if first element of L is smaller than first element of R (i.e. frontL ≤ frontR) then

append frontL to S and remove it from L

else
append frontR to S and remove it from R

if one of L or R is non-empty then
append remaining list onto S

return S

Running Time. Let T (n) denote the running time of mergesort(A, lo, hi) where n = hi −
lo + 1. Then since we make 2 recursive calls of half the size and merge in linear time we have

T (n) = 2T (n/2) + O(n), T (1) = O(1)

And therefore the running time is O(n log n).

Claim. mergesort(L, lo, hi) correctly sorts A[lo · · · hi] in non-decreasing order.

Proof. For a list A[lo · · · hi], let P (A[lo · · · hi]) be the statement that mergsort(A, lo, hi) cor-
rectly sorts A[lo · · · hi] into non-decreasing order. We will prove P (A[lo · · · hi]) is true for any list
A[lo · · · hi] by strong induction on |A| = hi− lo + 1.

As a base case, consider when |A| = 1, i.e. when hi = lo. This one-element list is already
sorted, and our algorithm correctly returns A[lo] as the sorted list.

For the inductive hypothesis, suppose that P(A[lo · · · hi]) is true for all lists of length < n; that
is, for any list A and hi− lo + 1 < n, mergesort(A, lo, hi) correctly sorts A[lo · · · hi].

Now consider a list A of length n. Our algorithm divides A into two halves of size < n;
therefore, L and R are in sorted order by our inductive hypothesis. The minimum element of A is
therefore either the minimum element of L (which is at the front of L) or the minimum element
of R (which is at the front of R). We correctly take whichever is smallest as the minimum of A.
We do this repeatedly, always selecting the next minimum element from the front of L or R, until
we’ve produced the sorted A.

Thus we have by induction that mergesort(A, lo, hi) correctly sorts any list A[lo · · · hi].


