
DS 320 Algorithms for Data Science Multiplicative Weight Update

Multiplicative Weight Update Key Points

• What you should remember about this problem:

– There are a bunch of experts or actions that we want to choose from each time-step.
Think of them as weather apps or financial advisors who you’ll take advice from each
day.

– You come up with an algorithm to choose an expert/action each time step (you must
use randomness to be competitive, as we saw—think back to rock paper scissors for
intuition), then the adversary chooses losses/rewards for each expert, e.g., “how wrong
was weather.com’s prediction of the weather today?”

– You want to update how you pick experts so that in hindsight you’ve done pretty okay. If
one expert isn’t doing a good job, you should stop giving them so much of a chance—so
we multiply our weights to decrease them based on the loss ` that the expert suffered,
parameterized by some update step size (η), i.e. for expert k at time t+ 1:

wt+1
k = wt

k · (1− η `tk)

and then we choose expert k with probability wt
k/

∑
iw

t
i .

– This is an online problem: we don’t know all the information in advance and plan
ahead, but rather, we learn a little bit at each time step (what the losses were for this
last period) and have to update accordingly.

• In online decision problems, we compare to the best fixed action rather than the best action
sequence because it’s not actually realistic to get anywhere close to the best action sequence
with an adversary.

• The additive difference (rather than multiplicative) between how the algorithm does and the
best fixed action is called regret. For loss1 vectors `1, . . . , `T , the regret of the action sequence
a1, . . . , aT is

T∑
t=1

`t(at)︸ ︷︷ ︸
our algorithm

−
N

min
i=1

T∑
t=1

`ti︸ ︷︷ ︸
best fixed action

. (1)

• Regret Θ(T ) is really bad. That means you made a mistake and the best fixed action didn’t
in effectively every time step. We want sublinear o(T ) regret, like O(

√
T ).

1Note that for the rewards setting, the definition of regret would instead be maxN
i=1

∑T
t=1 r

t
i −

∑T
t=1 r

t(at), still
minimizing the difference between the algorithm and the best fixed action, but now the maximum reward for the
best fixed action will be larger than the algorithm instead of the minimum loss being smaller.


