
DS 320 Algorithms for Data Science Complexity Classes

P vs. NP, NP Completeness, and Reductions

• A decision problem is in P if there is an algorithm which solves it in polynomial time. (“Easy
to Solve”)

• A decision problem is in NP if there exists a polynomial-time certifier algorithm (that takes
polynomial-size certificates). (“Easy to Check”)

– Can always find a certificate to convince me of a yes input.

– Can’t convince me that no inputs are actually yes inputs.

• P ⊆ NP—solve the problem itself in poly-time and use that as the certificate.

• Not all problems are in NP.

• If A ≤P B (A poly-time reduces to B), then you used B to solve A in polynomial time, so B
is at least as hard as A.

• A problem B is NP-hard if for all A ∈ NP , A ≤P B. That is, B is at least as hard as every
problem in NP. Note B is not necessarily in NP.

• A problem is NP-complete if it is NP-hard and also in NP. To prove a problem in NP-complete,

– Prove it’s NP-hard (reduce from a known NP-hard problem)

– Prove it’s in NP. (describe the certification algorithm)

• 3-SAT is NP-Hard. [Cook-Levin ’71]

– We showed that this implies 3-SAT is NP-complete, and thus so is Independent Set,
Vertex Cover, and Knapsack.

Main Steps for a Reduction

You will not be asked to prove any reductions, but reductions tend to follow a consistent pattern.
The following is for reducing A to B, that is, A ≤P B.

Step 1: Choose a problem to reduce to. What are some problems that you (a.) know how
to solve and (b.) have a similar structure to the one you want to solve? Pick one of these.
You might have to try several options before one works. Hereafter, we’ll call the problem you
are trying to solve A and the problem you are reducing to B.

Step 2: Construct an instance of problem B. Given an instance of problem A, give a sys-
tematic way of representing that instance as an instance of problem B. Each part of the
input to A should correspond to a part of the input for B.



Step 3: Solve your instance of problem B. We have assumed you know a method for solving
problem B. Solve the instance you constructed using this method.

Step 4: Interpret your solution to problem B. Your algorithm needs to return something!
You have solved the instance of problem B you have constructed; that should tell you what
you wanted to know about your instance of problem A. For yes/no decision problems, you
will often return true for A if the solution to B is true, and false if not. If you are asked to
produce a solution to A beyond a True/False answer, you will derive this solution to A from
your solution to B.

Step 5: Prove your algorithm is correct. To prove correctness, you should show how to turn
solutions to A into solutions to B and vice versa. If your problem is a yes/no decision problem,
this will imply that your algorithm returns “yes” if and only if the answer is actually “yes.”
If the problem requires you to return an explicit solution, this will show that the thing your
algorithm returns is a solution, and that you find a solution whenever one exists. The two
parts, more explicitly, are:

a. Turn a solution to B into a solution to A. If your algorithm returns something other
than True or False, you probably have already described how to do this. In either case,
you should prove that the solution you produce to A is indeed a solution to A - it is
feasilble, and if your are maximizing (or minimizing) an objective function, has a high
(or low) objective value.

For decision problems, this shows that your algorithm returns “yes” only if the answer is
truly yes. That is, it gives no false positives. For problems where you return a solution,
this proves that the solution you return is feasible.

b. Turn your solution to A into a solution to B. As with the other direction, you should
prove that this solution to B is feasible and if appropriate, has a high (or low) objective
value.

For decision problems, this shows that if the answer is truly yes, your algorithm will
return “yes.” That is, it gives no false negatives. For problems where you return a
solution this proves that your algorithm will always find a solution if it exists.

Step 6: Runtime. We will only care about proving that the runtime of our algorithm is polyno-
mial. To prove that this is the case, you only need to show that the size of the instance of B
that you constructed is polynomial in the size of your input to A. Since your algorithm for
solving B was a polynomial-time algorithm, the resulting runtime of the whole reduction will
be polynomial.

If you were interested in the precise runtime of your algorithm, you would need to plug the
size of your input to B into the runtime function for the algorithm you used to solve B


