DS 320 Algorithms for Data Science Spring 2023

Lecture #1 Worksheet Prof. Kira Goldner

Covered in introduction slides:

- Course policies (also in syllabus).
- What to expect in this class (also in FAQ).
- Sample of content we'll cover.

Runtime Review

In runtime analysis we do an informal accounting. We count basic operations (algebra, array assignment, etc) as constant time.¹

Analyze the runtime of the following algorithm:

Algorithm 1 FindMinIndex(B[t+1, n]).

```
Let MinIndex = t + 1.

for i = t + 1 to n do

if B[i] < B[\text{MinIndex}] then

MinIndex = i.

end if

end for

return MinIndex.
```

Which operations are constant-time?

Are there any loops? How many times do they run?

How does everything come together?

Which factors dominate asymptotically?

 $^{^{1}}$ This isn't quite right—for example, multiplication of large numbers should scale with the bit complexity—but is a good approximation for us.

Asymptotic Notation

Definition 1 (Upper bound $O(\cdot)$). For a pair of functions $f, g : \mathbb{N} \to \mathbb{R}$, we write $f \in O(g(n))$ if there exist (\exists) constants c_1, c_2 such that for all (s.t. \forall) $n \geq c_1$,

$$f(n) \le c_2 g(n)$$
.

We'll often write f(n) = O(g(n)) because we are sloppy.

Translation: For large n (at least some c_1), the function g(n) dominates f(n) up to a constant factor.

Definition 2 (Lower bound $\Omega(\cdot)$). For a pair of functions $f, g : \mathbb{N} \to \mathbb{R}$, we write $f \in \Omega(g(n))$ if there exist constants c_1, c_2 such that for all $n \geq c_1$,

$$f(n) \ge c_2 g(n)$$
.

Definition 3 (Tight bound $\Theta(\cdot)$). For a pair of functions $f, g : \mathbb{N} \to \mathbb{R}$, we write $f \in \Theta(g(n))$ if $f \in O(g(n))$ and $f \in \Omega(g(n))$.

Exercise: True or False?

Definition 4 (Strict upper bound $o(\cdot)$). For a pair of functions $f, g : \mathbb{N} \to \mathbb{R}$, we write $f \in o(g(n))$ if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0,$$

or equivalently, for any constant $c_2 > 0$, there exists a constant c_1 such that for all $n \ge c_1$,

$$f(n) < c_2 g(n)$$
.

Definition 5 (Strict lower bound $\omega(\cdot)$). For a pair of functions $f, g : \mathbb{N} \to \mathbb{R}$, we write $f \in \omega(g(n))$ if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty,$$

or equivalently, for any constant $c_2 > 0$, there exists a constant c_1 such that for all $n \ge c_1$,

$$f(n) > c_2 g(n).$$

Asymptotic Properties

• Multiplication by a constant:

If
$$f(n) = O(g(n))$$
 then for any $c > 0$, $c \cdot f(n) =$

• Transitivity:

If
$$f(n) = O(h(n))$$
 and $h(n) = O(g(n))$ then $f(n) =$

• Symmetry:

If
$$f(n) = O(g(n))$$
 then $g(n) =$

If
$$f(n) = \Theta(g(n))$$
 then $g(n) =$

• Dominant Terms:

If f(n) = O(g(n)) and d(n) = O(e(n)) then $f(n) + d(n) = O(\max\{g(n), e(n)\})$. It's fine to write this as O(g(n) + e(n)).

Common Functions

- Polynomials: $a_0 + a_1 n + \cdots + a_d n^d$ is $\Theta(n^d)$ if $a_d > 0$.
- Polynomial time: Running time is $O(n^d)$ for some constant d independent of the input size n.
- Logarithms: $\log_a n = \Theta(\log_b n)$ for all constants a, b > 0. This means we can avoid specifying the base of the logarithm.

For every x > 0, $\log n = o(n^x)$. Hence \log grows slower than every polynomial.

- Exponentials: For all r > 1 and all d > 0, $n^d = o(r^n)$. Every polynomial grows slower than every exponential
- Factorial: By Sterling's formula, factorials grow faster than every exponential:

$$n! = (\sqrt{2\pi n}) \left(\frac{n}{e}\right)^n (1 + o(1)) = 2^{\Theta(n \log n)}.$$