Divide \& Conquer III: Integer and Matrix Multiplication

Theorem 1 (The Master Theorem). Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the non-negative integers by the recurrence

$$
T(n)=a T(n / b)+f(n)
$$

where we interpret n / b as $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$. Then
$T(n)= \begin{cases}\Theta\left(n^{\log _{b} a}\right) & \text { if } f(n)=O\left(n^{\log _{b} a-\varepsilon}\right) \text { for a constant } \varepsilon>0 \\ \Theta\left(n^{\log _{b} a} \log _{2} n\right) & \text { if } f(n)=\Theta\left(n^{\log _{b} a}\right) \\ \Theta(f(n)) & \text { if } f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right) \text { for a constant } \varepsilon>0 \text { and } \\ & a f(n / b) \leq c f(n) \text { for a constant } c<1 \text { and for all sufficiently large } n .\end{cases}$

The Problem: Integer Multiplication

Your input for the integer multiplication problem is two n-digit numbers x and y. The goal is to output their product, $x \cdot y$.

What's the naïve algorithm and what's its running time?

Grade-school multiplication! You multiply together the digits of each of the numbers (n of them), plus the $O(n)$ time shifts and additions for each of them, which is $\Theta\left(n^{2}\right)$.

Step 1: Define your recursive subproblem.

One idea is to split each number into two parts: $x=10^{n / 2} a+b$ and $y=10^{n / 2} c+d$. Then

$$
x y=10^{n} a c+10^{n / 2}(a d+b c)+b d .
$$

Additions and multiplications by powers of 10 (just shifts) are linear-time, so this reduces the problem to smaller multiplication problems:

$$
T(n)=4 T(n / 2)+O(n)
$$

Which gives what running time?
$\Theta\left(n^{2}\right)$. This is not better.

The Speed Up:

We actually only need to make three recursive calls: $a c, b d$, and $(a+b)(c+d)$.
Step 2: Combine the solutions to your subproblems.
Show why this is enough.

$$
(a+b)(c+d)=(a d+b c)+(a c+b d)
$$

Then:

$$
\begin{aligned}
T(n) & =3 T(n / 2)+O(n) \\
& =n^{\log _{2} 3} \approx n^{1.59} .
\end{aligned}
$$

Matrix Multiplication: Strassen's Algorithm

The Problem: Matrix Multiplication

Your input for the matrix multiplication problem is two $n \times n$ matrices A and B. The goal is to output their product, $C=A B$. Recall that the $i k^{\text {th }}$ entry of C is given by $c_{i k}=\sum_{j=1}^{n} a_{i j} b_{j k}$.

What's the running time of the naïve algorithm here and why?

Each entry takes linear time and there are n^{2} entries, hence $\Theta\left(n^{3}\right)$.

Step 1: Define your recursive subproblem.

We divide each matrix into four submatrices.

$$
\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]=\left[\begin{array}{cc}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right]
$$

What running time does this give us?

$$
\begin{aligned}
T(n) & =8 T(n / 2)+\Theta\left(n^{2}\right) \\
& =\Theta\left(n^{3}\right) .
\end{aligned}
$$

The Speed Up:

We compute only the following products.

- $P 1=A(F-H)$
- $P 2=(A+B) H$
- $P 3=(C+D) E$
- $P 4=D(G-E)$
- $P 5=(A+D)(E+H)$
- $P 6=(B-D)(G+H)$
- $P 7=(A-C)(E+F)$

Step 2: Combine the solutions to your subproblems.
Show why this is enough.

$$
\begin{aligned}
A E+B G & =P 5+P 4-P 2+P 6 \\
A F+B H & =P 1+P 2 \\
C E+D G & =P 3+P 4 \\
C F+D H & =P 5+P 1-P 3-P 7
\end{aligned}
$$

Then the running time:

$$
\begin{aligned}
T(n) & =7 T(n / 2)+\Theta\left(n^{2}\right) \\
& =n^{\log _{2} 7} \approx n^{2.8} .
\end{aligned}
$$

