Dynamic Programming II: Segmented Least Squares

The Problem

We are given a set of points $\left\{p_{1}=\left(x_{1}, y_{2}\right), p_{2}=\left(x_{2}, y_{2}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right)\right\}$ sorted by x-coordinate. Our goal is to fit a (segmented) line to P with least squares error.

What is "error" here? We use square error (SSE) from any line we use. That is, if our line is determined by slope a and y-intercept b, then our SSE would be

$$
S S E=\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2} .
$$

Using calculus, we can derive that this is minimized when we set

$$
a=\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}} \quad \text { and } \quad b=\frac{\sum_{i} y_{i}-a \sum_{i} x_{i}}{n} .
$$

But what if we can use as many segments as we want, just with a penalty c for each additional segment? How should we decide on the number of segments, and on what the segments should look like?

Our goal is to partition P into some C contiguous segments with minimal least squares error when there is a penalty c for each segment.

Making the Key Observation

The last point p_{n} belongs to a single segment which must begin somewhere. Where does it begin? In each case, what does the optimal solution look like?

Step 1: The Subproblem

Step 2: The Recurrence

Step 3: Prove that your recurrence is correct.

Step 4: State and prove your base cases.

Step 5: State how to solve the original problem.

Step 6: The Algorithm

Step 7: Running Time

