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Linear Programming I

Why Linear Programming rocks:

• Incredibly general: Every problem we’ve seen so far can be formulated as a linear program.

• Computational tractable

– In theory: Can be solved in polynomial time

– In practice: Fast with input sizes up into the millions!

• Contains many properties that can be turned into useful algorithmic paradigms and analysis:

– Duality:

∗ Solve an easier equivalent problem.

∗ How do we know when we’re done?

– Complementary Slackness and Strong Duality: something is optimal!

How to Think About Linear Programming

Comparison to Systems of Linear Equations

Remember systems of equations, with aij ’s and bi’s given. We used Gaussian elimination; to find
feasible x1, . . . , xn, or correctly reports that no feasible solution exists.

a11x1 + a12x2 + · · ·+ a12xn = b1

a21x1 + a22x2 + · · ·+ a22xn = b2
...

am1x1 + am2x2 + · · ·+ am2xn = bm.

What about linear inequalities? The point of linear programming is to solve these, and when there
are multiple feasible solutions, we would like to compute the “best” one.

Ingredients of a Linear Program

Ingredients of a Linear Program

a. Decision variables x1, . . . , xn ∈ R.



b. Linear constraints, each of the form

n∑
j=1

ajxj (∗) bi,

where (∗) could be ≤,≥, or =.

c. A linear objective function of the form

max

n∑
j=1

cjxj or min

n∑
j=1

cjxj .

Comments:

• The aij ’s, bi’s, and cj ’s are constants, part of the input (like 5, −1, 10, etc.).

• The xj ’s are free, and it is the job of a linear programming algorithm to figure out the best
values for them.

• We don’t need to use both “≤” and “≥”inequalities—one can be transformed into the other
just by multiplying all the coefficients by −1 (the aij ’s and bi’s are allowed to be positive or
negative).

• Equality constraints are superfluous, in that the constraint that a quantity equals bi is equiv-
alent to the pair of inequality constraints stating that the quantity is both at least bi and at
most bi.

• There is also no difference between the “min” and “max” cases for the objective function—one
is easily converted into the other just by multiplying all the cj ’s by −1 (the cj ’s are allowed
to be positive or negative).

What’s not allowed in a linear program? Non-linear terms like x2j , xjxk, log(1+xj), etc. We’re only
allowed to have xj multiplied by a constant.

A Simple Example

To make linear programs more concrete and develop your geometric intuition about them, let’s
look at a toy example. (Many “real” examples of linear programs are coming shortly.) Suppose
there are two decision variables x1 and x2—so we can visualize solutions as points (x1, x2) in the
plane. See Figure 1. Let’s consider the (linear) objective function of maximizing the sum of the
decision variables:

maxx1 + x2.



Figure 1: A toy example of a linear program.

We’ll look at four (linear) constraints:

x1 ≥ 0

x2 ≥ 0

2x1 + x2 ≤ 1

x1 + 2x2 ≤ 1.

The first two inequalities restrict feasible solutions to the non-negative quadrant of the plane.
The second two inequalities further restrict feasible solutions to lie in the shaded region depicted in
Figure 1. Geometrically, the objective function asks for the feasible point furthest in the direction
of the coefficient vector (1, 1)—the “most northeastern” feasible point. Eyeballing the feasible
region, this point is (13 ,

1
3), for an optimal objective function value of 2

3 . This is the “last point of
intersection” between a level set of the objective function and the feasible region (as one sweeps
from southwest to northeast).

Geometric Intuition

While it’s always dangerous to extrapolate from two or three dimensions to an arbitrary number,
the geometric intuition above remains valid for general linear programs, with an arbitrary number
of dimensions (i.e., decision variables) and constraints. Even though we can’t draw pictures when
there are many dimensions, the relevant algebra carries over without any difficulties. Specifically:

a. A linear constraint in n dimensions corresponds to a halfspace in Rn. Thus a feasible region
is an intersection of halfspaces, the higher-dimensional analog of a polygon.1

b. When there is a unique optimal solution, it is a vertex (i.e., “corner”) of the feasible region.

A few edge cases:

1A finite intersection of halfspaces is also called a “polyhedron;” in the common special case where the feasible
region is bounded, it is called a “polytope.”



a. There might be no feasible solutions at all. For example, if we add the constraint x1 +x2 ≥ 1
to our toy example, then there are no longer any feasible solutions. Linear programming
algorithms correctly detect when this case occurs.

b. The optimal objective function value is unbounded (+∞ for a maximization problem, −∞ for
a minimization problem). Note a necessary but not sufficient condition for this case is that
the feasible region is unbounded. For example, if we dropped the constraints 2x1 + x2 ≤ 1
and x1 + 2x2 ≤ 1 from our toy example, then it would have unbounded objective function
value. Again, linear programming algorithms correctly detect when this case occurs.

c. The optimal solution need not be unique, as a “side” of the feasible region might be parallel
to the levels sets of the objective function. Whenever the feasible region is bounded, however,
there always exists an optimal solution that is a vertex of the feasible region.2

Examples

Example 1: Grain Nutrients

Suppose BU has hired you to optimize nutrition for campus dining. There are two possible grains
they can offer, grain 1 and grain 2, and each contains the macronutrients found in the table below,
plus cost per kg for each of the grains.

Macros Starch Proteins Vitamins Cost ($/kg)

Grain 1 5 4 2 0.6

Grain 2 7 2 1 0.35

The nutrition requirement per day of starch, proteins, and vitamins is 8, 15, and 3 respectively.
Determine how much of each grain to buy such that BU spends as little but meets its nutrition
requirements.

Decision variables:

Objective:

Constraints:

2There are some annoying edge cases for unbounded feasible regions, for example the linear program max(x1 +x2)
subject to x1 + x2 = 1.



Example 2: Transportation

You’re working for a company that’s producing widgets among two different factories and selling
them from three different centers. Each month, widgets need to be transported from the factories
to the centers. Below are the transportation costs from each factory to each center, along with the
monthly supply and demand for each factory and center respectively. Determine how to route the
widgets in a way that minimizes transportation costs.

Transit Cost Center 1 Center 2 Center 3

Factory 1 5 5 3

Factory 2 6 4 1

• The supply per factory is 6 and 9 respectively.

• The demand per center is 8, 5, and 2 respectively.

Decision variables:

Objective:

Constraints:



Converting to Normal Form

The “Normal Form” of a Linear Program looks like:

max cTx

subject to Ax ≤ b

Our Transportation problem had the LP:

min 5x11 + 5x12 + 3x13 + 6x21 + 4x22 + 1x23

subject to x11 + x12 + x13 = 6 (Factor 1 supply)

x21 + x22 + x23 = 9 (Factor 2 supply)

x11 + x21 = 8 (Center 1 demand)

x12 + x22 = 5 (Center 2 demand)

x13 + x23 = 2 (Center 3 demand)

xij ≥ 0 (non-negativity)

How can we convert it to normal form—a maximization problem with all less-than-or-equal-to con-
straints?

First observe that x11 + x12 + x13 = 6 is equivalent to having both inequalities

But, we need both to be ≤ inequalities! We transform them to

The resulting LP in normal form is:


