Linear Programming III: Duality

Using Linear Programming for a Vertex Cover Approximation Algorithm

$$
\begin{array}{llr}
\min & \sum_{i \in V} w_{i} x_{i} & \\
\text { s.t. } & x_{i}+x_{j} \geq 1 & (i, j) \in E \\
& x_{i} \in[0,1] & i \in V .
\end{array}
$$

Claim 1. Let S^{*} denote the optimal vertex cover of minimum weight, and let x^{*} denote the optimal solution to the Linear Program. Then $\sum_{i \in V} w_{i} x_{i}^{*} \leq w\left(S^{*}\right)=$ opt.

Proof. The vertex cover problem is equivalent to the integer program, whereas the linear program is a relaxation. Then there are simply more solutions allowed to the linear program, so the minimum can only be smaller.

Claim 2. The set $S=\left\{i: x_{i} \geq 0.5\right\}$ is a vertex cover, and $w(S) \leq 2 \sum_{i \in V} w_{i} x_{i}^{*}$.
Proof. First, S is a vertex cover: for any edge $e=(i, j)$, at least one of i or j must be in S, because of our constraint $x_{i}+x_{j} \geq 1$, which forces at least one of these variables to be $\geq \frac{1}{2}$ and thus in S.

With respect to weight:

$$
\sum_{i \in V} w_{i} x_{i}^{*} \geq \sum_{i \in S} w_{i} x_{i}^{*} \geq \frac{1}{2} \sum_{i \in S} w_{i}=\frac{1}{2} w(S) .
$$

Then our algorithm of running an LP and rounding it to give the vertex cover S is a 2-approximation to the optimal vertex cover S^{*}, as $w(S) \leq 2 w\left(S^{*}\right)$ by Claims 1 and 2 .

LP Duality

The Dual of a Linear Program

Every linear program has a dual linear program. We call the original linear program the primal. A maximization problem's dual is a minimization problem. There are a bunch of amazing properties that come from LP duality.

We have the following optimization problem: You're selling nutrients to the BU population and deciding what to price each macro at. The decision variables x_{i} will indicate the price per nutrient. The constraints indicate that these prices together cannot exceed the prices for the grains that you're extracting the nutrients from, since that's already the market price. The goal is to maximize your profits from a population that is buying exactly the nutrient diet of 8 kg starch, 15 kg proteins,
and 3 kg vitamins.
Primal:

$$
\begin{array}{rlrl}
\max & 8 x_{1}+15 x_{2}+3 x_{3} & & \\
\text { subject to } & 5 x_{1}+4 x_{2}+2 x_{3} \leq 0.6 & \text { (grain 1) } \quad\left(y_{1}\right) \\
& 7 x_{1}+2 x_{2}+1 x_{3} \leq 0.35 & \text { (grain 2) } \quad\left(y_{2}\right) \\
& x_{1}, x_{2}, x_{3} \geq 0 & \text { (non-negativity) }
\end{array}
$$

Dual:

$$
\begin{array}{rlrr}
\min & 0.6 y_{1}+0.35 y_{2} & & \\
\text { subject to } & 5 y_{1}+7 y_{2} \geq 8 & \text { (starch) } & \left(x_{1}\right) \\
& 4 y_{1}+2 y_{2} \geq 15 & \text { (proteins) } & \left(x_{2}\right) \\
& 2 y_{1}+1 y_{2} \geq 3 & \text { (vitamins) } & \left(x_{3}\right) \\
& y_{1}, y_{2} \geq 0 & \text { (non-negativity) }
\end{array}
$$

To take the dual: Label each primal constraint with a new dual variable. In our new linear program, each dual constraint will correspond to a primal variable. For the left-hand side, count up the appearances of this constraint's primal variable (e.g., x_{1}) in each of the primal constraints and multiply them by the dual variable for those constraints. That is, if x_{1} appears 5 times ($5 x_{1}$) in constraint for y_{1}, then add $5 y_{1}$ to x_{1} 's constraint. Don't forget to include its appearance in the primal's objective function, but this will be the right-hand side of the constraint. Finally, the dual objective function is given by the right-hand side coefficients and their correspondence to the dual variables via the constraints in the primal. (See above).

Sometimes, the dual can even be interpreted as a related problem. In fact, this dual can be interpreted as exactly our nutrition example from Lecture $\# 18$: BU has hired you to optimize nutrition for campus dining. There are two possible grains they can offer, grain 1 and grain 2 , and each contains the macronutrients given in the table in Lecture \#18, plus cost per kg for each of the grains. The nutrition requirement per day of starch, proteins, and vitamins is 8,15 , and 3 respectively. Determine how much of each grain to buy such that BU spends as little but meets its nutrition requirements.

The following is the normal form for a maximization problem primal and its primal:

$$
\begin{aligned}
\max & \mathbf{c}^{T} \mathbf{x} & \min & \mathbf{b}^{T} \mathbf{y} \\
\text { subject to } & \mathbf{A x} \leq \mathbf{b} & \text { subject to } & \mathbf{A}^{T} \mathbf{y} \geq \mathbf{c}
\end{aligned}
$$

For the above example:

$$
\mathbf{A}=\left[\begin{array}{lll}
5 & 4 & 2 \\
7 & 2 & 1
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
0.6 \\
0.35
\end{array}\right] \quad \mathbf{c}=\left[\begin{array}{c}
8 \\
15 \\
3
\end{array}\right]
$$

Example 3: Maximum Matching

Given a graph $G=(V, E)$ choose a maximum size matching-a set of edges S such that no vertex is covered by more than one edge.

Decision variables: x_{e} indicating whether edge e is in the matching.
Primal Linear Program:

$$
\begin{array}{rlr}
\max & \sum_{e \in E} x_{e} & \\
\text { subject to } & \sum_{e: v \in e} x_{e} \leq 1 & \forall v \\
x_{e} \geq 0 & \text { (vertex matched at most once) }\left(y_{v}\right) \\
& \forall e \text { (non-negativity) }
\end{array}
$$

Taking the dual of the above primal, we get the following linear program:

$$
\begin{array}{rll}
\min & & \\
\text { subject to } & y_{v \in V} & \\
\sum_{v \in e} y_{v} \geq 1 & \forall e & \text { (edge covered) } \quad\left(x_{e}\right) \\
y_{v} \geq 0 & \forall v \quad \text { (non-negativity) }
\end{array}
$$

What problem is this? (Fractional) Vertex Cover!

Conditions for Optimality

Weak Duality

Theorem 1 (Weak Duality). If \mathbf{x} is feasible in (P) and \mathbf{y} is feasible in (D) then $\mathbf{c}^{T} \mathbf{x} \leq \mathbf{b}^{T} \mathbf{y}$.
Proof.

$$
\mathbf{c}^{T} \mathbf{x} \stackrel{1}{\leq}\left(\mathbf{A}^{T} \mathbf{y}\right) \mathbf{x}=\mathbf{y}^{T} \mathbf{A} \mathbf{x} \stackrel{2}{\leq} \mathbf{y}^{T} \mathbf{b}=\mathbf{b}^{T} \mathbf{y}
$$

Where (1) follows by the dual constraints $\mathbf{A}^{T} \mathbf{y} \geq \mathbf{c}$ and (2) follows by the primal constraints Ax $\leq \mathbf{b}$.

This theorem says that any feasible solution to the primal is a lower bound to any feasible solution to the dual, and likewise, any feasible solution to the dual is an upper bound to the primal.

That is, fractional vertex cover gives an upper bound on how large the (fractional) maximum matching can be, and likewise, fractional maximum matching gives a lower bound on how small the minimum (fractional) vertex cover can be.

