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Linear Programming III: Duality

Using Linear Programming for a Vertex Cover Approximation Algorithm

min
∑
i∈V

wixi

s.t. xi + xj ≥ 1 (i, j) ∈ E

xi ∈ [0, 1] i ∈ V.

Claim 1. Let S∗ denote the optimal vertex cover of minimum weight, and let x∗ denote the optimal
solution to the Linear Program. Then

∑
i∈V wix

∗
i ≤ w(S∗) = opt.

Proof. The vertex cover problem is equivalent to the integer program, whereas the linear program is
a relaxation. Then there are simply more solutions allowed to the linear program, so the minimum
can only be smaller.

Claim 2. The set S = {i : xi ≥ 0.5} is a vertex cover, and w(S) ≤ 2
∑

i∈V wix
∗
i .

Proof. First, S is a vertex cover: for any edge e = (i, j), at least one of i or j must be in S, because
of our constraint xi + xj ≥ 1, which forces at least one of these variables to be ≥ 1

2 and thus in S.
With respect to weight: ∑

i∈V
wix

∗
i ≥

∑
i∈S

wix
∗
i ≥

1

2

∑
i∈S

wi =
1

2
w(S).

Then our algorithm of running an LP and rounding it to give the vertex cover S is a 2-approximation
to the optimal vertex cover S∗, as w(S) ≤ 2w(S∗) by Claims 1 and 2.

LP Duality

The Dual of a Linear Program

Every linear program has a dual linear program. We call the original linear program the primal. A
maximization problem’s dual is a minimization problem. There are a bunch of amazing properties
that come from LP duality.

We have the following optimization problem: You’re selling nutrients to the BU population and
deciding what to price each macro at. The decision variables xi will indicate the price per nutrient.
The constraints indicate that these prices together cannot exceed the prices for the grains that
you’re extracting the nutrients from, since that’s already the market price. The goal is to maximize
your profits from a population that is buying exactly the nutrient diet of 8kg starch, 15kg proteins,



and 3kg vitamins.

Primal:

max 8x1 + 15x2 + 3x3

subject to 5x1 + 4x2 + 2x3 ≤ 0.6 (grain 1) (y1)

7x1 + 2x2 + 1x3 ≤ 0.35 (grain 2) (y2)

x1, x2, x3 ≥ 0 (non-negativity)

Dual:

min 0.6y1 + 0.35y2

subject to 5y1 + 7y2 ≥ 8 (starch) (x1)

4y1 + 2y2 ≥ 15 (proteins) (x2)

2y1 + 1y2 ≥ 3 (vitamins) (x3)

y1, y2 ≥ 0 (non-negativity)

To take the dual: Label each primal constraint with a new dual variable. In our new linear pro-
gram, each dual constraint will correspond to a primal variable. For the left-hand side, count up
the appearances of this constraint’s primal variable (e.g., x1) in each of the primal constraints and
multiply them by the dual variable for those constraints. That is, if x1 appears 5 times (5x1) in
constraint for y1, then add 5y1 to x1’s constraint. Don’t forget to include its appearance in the
primal’s objective function, but this will be the right-hand side of the constraint. Finally, the dual
objective function is given by the right-hand side coefficients and their correspondence to the dual
variables via the constraints in the primal. (See above).

Sometimes, the dual can even be interpreted as a related problem. In fact, this dual can be
interpreted as exactly our nutrition example from Lecture #18: BU has hired you to optimize
nutrition for campus dining. There are two possible grains they can offer, grain 1 and grain 2, and
each contains the macronutrients given in the table in Lecture #18, plus cost per kg for each of
the grains. The nutrition requirement per day of starch, proteins, and vitamins is 8, 15, and 3
respectively. Determine how much of each grain to buy such that BU spends as little but meets its
nutrition requirements.

The following is the normal form for a maximization problem primal and its primal:

max cTx min bTy

subject to Ax ≤ b subject to ATy ≥ c

For the above example:

A =

[
5 4 2
7 2 1

]
b =

[
0.6
0.35

]
c =

 8
15
3





Example 3: Maximum Matching

Given a graph G = (V,E) choose a maximum size matching—a set of edges S such that no vertex
is covered by more than one edge.

Decision variables: xe indicating whether edge e is in the matching.

Primal Linear Program:

max
∑
e∈E

xe

subject to
∑
e:v∈e

xe ≤ 1 ∀v (vertex matched at most once) (yv)

xe ≥ 0 ∀e (non-negativity)

Taking the dual of the above primal, we get the following linear program:

min
∑
v∈V

yv

subject to
∑
v∈e

yv ≥ 1 ∀e (edge covered) (xe)

yv ≥ 0 ∀v (non-negativity)

What problem is this? (Fractional) Vertex Cover!

Conditions for Optimality

Weak Duality

Theorem 1 (Weak Duality). If x is feasible in (P) and y is feasible in (D) then cTx ≤ bTy.

Proof.

cTx
1
≤ (ATy)x = yTAx

2
≤ yTb = bTy.

Where (1) follows by the dual constraints ATy ≥ c and (2) follows by the primal constraints
Ax ≤ b.

This theorem says that any feasible solution to the primal is a lower bound to any feasible solution
to the dual, and likewise, any feasible solution to the dual is an upper bound to the primal.

That is, fractional vertex cover gives an upper bound on how large the (fractional) maximum
matching can be, and likewise, fractional maximum matching gives a lower bound on how small
the minimum (fractional) vertex cover can be.


