Linear Programming IV: More Duality and the Minimax Theorem

The Dual of a Linear Program

To take the dual: Label each primal constraint with a new dual variable. In our new linear program, each dual constraint will correspond to a primal variable. For the left-hand side, count up the appearances of this constraint's primal variable (e.g., x_{1}) in each of the primal constraints and multiply them by the dual variable for those constraints. That is, if x_{1} appears 5 times ($5 x_{1}$) in constraint for y_{1}, then add $5 y_{1}$ to x_{1} 's constraint. Don't forget to include its appearance in the primal's objective function, but this will be the right-hand side of the constraint. Finally, the dual objective function is given by the right-hand side coefficients and their correspondence to the dual variables via the constraints in the primal.

The following is the normal form for a maximization problem primal and its primal:

$$
\begin{array}{rlrl}
\max & \mathbf{c}^{T} \mathbf{x} & \min & \mathbf{b}^{T} \mathbf{y} \\
\text { subject to } & \mathbf{A x} \leq \mathbf{b} & \text { subject to } & \mathbf{A}^{T} \mathbf{y} \geq \mathbf{c} \\
& \mathbf{x} \geq \mathbf{0} & \mathbf{y} \geq \mathbf{0}
\end{array}
$$

Example 3: Maximum Matching

Given a graph $G=(V, E)$ choose a maximum size matching-a set of edges S such that no vertex is covered by more than one edge.

Decision variables: x_{e} indicating whether edge e is in the matching.
Primal Linear Program:

$$
\begin{array}{rlr}
\max & \sum_{e \in E} x_{e} & \\
\text { subject to } & \sum_{e: v \in e} x_{e} \leq 1 & \forall v \\
x_{e} \geq 0 & \forall e \quad \text { (vertex matched at most once) } \\
& \forall \text { non-negativity) }
\end{array}
$$

Taking the dual of the above primal, we get what linear program?

What problem is this?

Conditions for Optimality

Weak Duality

Theorem 1. If \mathbf{x} is feasible in (P) and \mathbf{y} is feasible in (D) then $\mathbf{c}^{T} \mathbf{x} \leq \mathbf{b}^{T} \mathbf{y}$.

Give an upper bound on maximum matching:

Give a lower bound on vertex cover:

Strong Duality

Theorem 2 (Strong Duality). A pair of solutions $\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right)$ are optimal for the primal and dual respectively if and only if $\mathbf{c}^{T} \mathbf{x}^{*}=\mathbf{b}^{T} \mathbf{y}^{*}$.

Proof. (\Rightarrow) Skip.
(\Leftarrow)

Complementary Slackness

Primal (P):

$$
\begin{aligned}
\max & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & \sum_{i} a_{j i} x_{i} \leq b_{j} \quad \forall j \quad\left(y_{j}\right) \\
& x_{i} \geq 0 \quad \forall i
\end{aligned}
$$

Dual (D):

$$
\begin{aligned}
\min & \mathbf{b}^{T} \mathbf{y} \\
\text { subject to } & \sum_{i} a_{i j} y_{i} \geq c_{i} \quad \forall i \quad\left(x_{i}\right) \\
& y_{j} \geq 0 \quad \forall j
\end{aligned}
$$

Theorem 3 (Complementary Slackness). A pair of solutions $\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right)$ are optimal for the primal and dual respectively if and only if the following complementary slackness conditions (1) and (2) hold:

Proof.

Zero-Sum Games and the Minimax Theorem

	Rock	Paper	Scissors
Rock	0	-1	1
Paper	1	0	-1
Scissors	-1	1	0

The Minimax Theorem

Theorem 4 (Minimax Theorem). For every two-player zero-sum game A,

$$
\begin{equation*}
\max _{\mathbf{x}}\left(\min _{\mathbf{y}} \mathbf{x}^{T} \mathbf{A} \mathbf{y}\right)=\min _{\mathbf{y}}\left(\max _{\mathbf{x}} \mathbf{x}^{T} \mathbf{A} \mathbf{y}\right) . \tag{1}
\end{equation*}
$$

From LP Duality to Minimax

$$
\begin{align*}
\max _{\mathbf{x}}\left(\min _{\mathbf{y}} \mathbf{x}^{T} \mathbf{A} \mathbf{y}\right) & =\max _{\mathbf{x}}\left(\min _{j=1}^{n} \mathbf{x}^{T} \mathbf{A} \mathbf{e}_{j}\right) \tag{2}\\
& =\max _{\mathbf{x}}\left(\min _{j=1}^{n} \sum_{i=1}^{m} a_{i j} x_{i}\right) \tag{3}
\end{align*}
$$

