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Linear Programming IV: More Duality and Zero-Sum Games

To take the dual: Label each primal constraint with a new dual variable. In our new linear pro-
gram, each dual constraint will correspond to a primal variable. For the left-hand side, count up
the appearances of this constraint’s primal variable (e.g., x1) in each of the primal constraints and
multiply them by the dual variable for those constraints. That is, if x1 appears 5 times (5x1) in
constraint for y1, then add 5y1 to x1’s constraint. Don’t forget to include its appearance in the
primal’s objective function, but this will be the right-hand side of the constraint. Finally, the dual
objective function is given by the right-hand side coefficients and their correspondence to the dual
variables via the constraints in the primal.

The following is the normal form for a maximization problem primal and its primal:

max cTx min bTy

subject to Ax ≤ b subject to ATy ≥ c

Example 3: Maximum Matching

Given a graph G = (V,E) choose a maximum size matching—a set of edges S such that no vertex
is covered by more than one edge.

Decision variables: xe indicating whether edge e is in the matching.

Primal Linear Program:

max
∑
e∈E

xe

subject to
∑
e:v∈e

xe ≤ 1 ∀v (vertex matched at most once) (yv)

xe ≥ 0 ∀e (non-negativity)

Taking the dual of the above primal, we get the following linear program:

min
∑
v∈V

yv

subject to
∑
v∈e

yv ≥ 1 ∀e (edge covered) (xe)

yv ≥ 0 ∀v (non-negativity)

What problem is this? (Fractional) Vertex Cover!



Conditions for Optimality

Weak Duality

Theorem 1 (Weak Duality). If x is feasible in (P) and y is feasible in (D) then cTx ≤ bTy.

This theorem says that any feasible solution to the primal is a lower bound to any feasible solution
to the dual, and likewise, any feasible solution to the dual is an upper bound to the primal.

That is, fractional vertex cover gives an upper bound on how large the (fractional) maximum
matching can be, and likewise, fractional maximum matching gives a lower bound on how small
the minimum (fractional) vertex cover can be.

Strong Duality

Strong duality states that everything in fact needs to hold with equality to be optimal.

Theorem 2 (Strong Duality). A pair of solutions (x∗,y∗) are optimal for the primal and dual
respectively if and only if cTx∗ = bTy∗.

Proof. (⇐) The if direction is easy to see: we know that the dual gives an upper bound on the
primal, so if these objectives are equal, then the primal objective that we are trying to maximize
could not possible get any larger, as it’s always at most the dual’s objective. This is as tight as
possible.

(⇒) The only if direction is harder to prove, and we’ll skip it for now.

Complementary Slackness

We rewrite the primal and dual with each constraint separated, and then formalize another con-
dition for optimality called complementary slackness, which states that for each corresponding
constraint and variable, at most one can be slack in an optimal solution.

Primal (P ): Dual (D):

max cTx min bTy

subject to
∑
i

ajixi ≤ bj ∀j (yj) subject to
∑
i

aijyi ≥ ci ∀i (xi)

xi ≥ 0 ∀i yj ≥ 0 ∀j

Theorem 3 (Complementary Slackness). A pair of solutions (x∗,y∗) are optimal for the primal
and dual respectively if and only if the following complementary slackness conditions (1) and (2)
hold: ∑

i

ajixi = bj or yj = 0 (1)
∑
i

aijyi = ci or xi = 0. (2)

Proof. (⇒) According to complementary slackness, by rearranging our constraint, either
∑

i ajixi−
bj = 0 or yj = 0. This ensures that the multiplied quantity (

∑
i ajixi − bj) yj = 0, as one of the

two terms on the left-hand side must be 0. Then multiplying out and rearranging gives that



yj
∑

i ajixi = yjbj . This process with all rows gives the equality from complementary slackness
that yTAx = yTb.

Similarly, using the condition that
∑

i aijyi = ci or xi = 0 gives that cTx = (ATy)x.
Then following our inequalities in the proof of weak duality, they now all hold with equality, so

by Strong Duality, (x,y) are optimal solutions to the primal and dual.

cTx = (ATy)x = yTAx = yTb = bTy.

(⇐) Similarly, if Strong Duality holds, the above inequalities hold with equality, in which case it
must be that yj

∑
i ajixi = yjbj for all j and

∑
i aijyixi = cixi for all i, and hence that either∑

i ajixi − bj = 0 or yj = 0 for all j and that either
∑

i aijyi = ci or xi = 0 for all i.

Zero-Sum Games and the Minimax Theorem

Consider the game Rock-Paper-Scissors, where as usual, paper covers rock, scissors cuts paper,
and rock breaks scissors (that is: the former beats the latter in the comparison). In a face-off, the
winner earns +1 and the loser earns -1. If two of the same type face each other, then there is a tie,
and both earn 0.

The matrix below shows the game of Rock-Paper Scissors depicted as a zero-sum-game. Sup-
pose that brothers Ron and Charlie Weasley are facing off. Each brother must choose a strategy.
In the language of the payoff matrix below, Ron is the row player, and he must choose a row to
play as his strategy. Similarly, Charlie is the column player and he just choose which column to
play. If Ron chooses row i and Charlie chooses column j, then the payoff to Ron will be aij , and
the payoff to Charlie will be −aij , hence the term “zero-sum.” Thus, the row and column players
prefer bigger and smaller numbers, respectively.

Rock Paper Scissors

Rock 0 -1 1

Paper 1 0 -1

Scissors -1 1 0

Order of Turns

• Typically, RPS is played by both players simultaneously choosing their strategies.

• But what if I made you go first? That’s obviously unfair—whatever you do, I can respond
with the winning move.

• Now what if I only forced you to commit to a probability distribution over rock, paper, and
scissors? (Then I respond choosing a strategy, and then nature flips coins on your behalf.)

You can protect yourself by randomizing uniformly among the three options—then, no matter
what I do, I’m equally likely to win, lose, or tie.

The minimax theorem states that, in general games of “pure competition,” a player moving first
can always protect herself by randomizing appropriately.



The Minimax Theorem

Notation:

• m×n payoff matrix A—aij is the row player’s payoff for outcome (i, j) when row player plays
strategy i and column player plays strategy j

• mixed row strategy x (a distribution over rows)

• mixed column strategy y (a distribution over columns)

Expected payoff of the row player:

m∑
i=1

n∑
j=1

Pr[outcome (i, j)] aij =
m∑
i=1

n∑
j=1

Pr[row i chosen]︸ ︷︷ ︸
=xi

Pr[column j chosen]︸ ︷︷ ︸
=yj

aij

= xTAy

The minimax theorem is the amazing statement that turn order doesn’t matter.

Theorem 4 (Minimax Theorem). For every two-player zero-sum game A,

max
x

(
min
y

xTAy

)
= min

y

(
max
x

xTAy
)
. (1)

On the left, the row player goes first, choosing a strategy to maximize their payoff and protect
against the fact that the column player goes second and adapts to their strategy. The right is the
opposite situation. The value of the game (value that both sides will equal) is 0 in this case: the
first player will play randomly and the second will respond arbitrarily.

From LP Duality to Minimax

This is not the original or only argument, but we will now derive Theorem 4 from LP duality
arguments. The first step is to formalize the problem of computing the best strategy for the player
forced to go first.

Two issues: (1) the nested min/max, and (2) the quadratic (nonlinear) character of xTAy in
the decision variables x, y.

Observation 5. The second player never needs to randomize. If the row player goes first and
chooses any distribution x, the column player can then simply compute the expected payoff (with
respect to x) of each column and choose the best.

In math, we have argued that

max
x

(
min
y

xTAy

)
= max

x

(
n

min
j=1

xTAej

)
(2)

= max
x

(
n

min
j=1

m∑
i=1

aijxi

)
(3)



where ej is the jth standard basis vector, corresponding to the column player deterministically
choosing column j.

We’ve solved one of our problems by getting rid of y. But there is still the nested max/min.


