
DS 320 Algorithms for Data Science Lecture #23 Worksheet
Spring 2023 Prof. Kira Goldner

Multiplicative Weight Update

Online Decision-Making

At each time step t = 1, 2, . . . , T :

a decision-maker picks a probability distribution pt over her experts or actions i =
1, . . . , N

an adversary picks a loss vector `t : A→ [0, 1]

an action it is chosen according to the distribution pt, and the decision-maker receives
loss `ti

the decision-maker learns `t, the entire loss vector

The input arrives “one piece at a time.”

What should we compare to?

• We can’t compare to the best action sequence
∑T

i=1 minN
i=1 `

t
i or we may get no approximation.

• Instead, we compare to the best fixed action minN
i=1

∑T
i=1 `

t
i.

• Specifically, our goal is to minimize regret. For fixed loss vectors `1, . . . , `T . The regret of the
action sequence a1, . . . , aT is

T∑
t=1

`t(at)︸ ︷︷ ︸
our algorithm

−
N

min
i=1

T∑
t=1

`ti︸ ︷︷ ︸
best fixed action

. (1)

Example 1 (Randomization Is Necessary for No Regret).



Example 2 (
√

(lnn)/T Regret Lower Bound).

The Multiplicative Weights Algorithm

Formally, we want an algorithm that works in the following framework:

1. In rounds 1, . . . , T , the algorithm chooses some expert it.

2. Each expert i experiences a loss `ti ∈ [0, 1]. The algorithm experiences the loss of the expert
it chooses: `tA = `tit .

3. The total loss of expert i is LT
i =

∑T
t=1 `

t
i, and the total loss of the algorithm is Ep [LMWU ] =

Ep

[∑T
t=1 `

t
it

]
. The goal of the algorithm is to obtain loss not much worse than that of the

best expert: mini L
T
i .

Multiplicative Weights (MW) Algorithm

initialize weights w1
i = 1 for every expert i = 1 . . . , N

for each time step t = 1, 2, . . . , T do

let W t =
∑N

i=1 w
t
k be the sum of the weights

choose expert k with probability ptk = wt
k/W

t

for each expert k, update weights

wt+1
k = wt

k · (1− ε `tk)



Theorem 1. For any sequence of losses, over the randomness of our algorithmic choices p,

Ep[RegretMWU] ≤ 2
√

ln(N)T + εT.

That is, for any expert k

1

T
Ep

[
T∑
t=1

`tit

]
≤ 1

T

[
T∑
t=1

`tk

]
+ ε +

ln(N)

ε · T

In particular, by setting ε =

√
ln(N)
T we get:

1

T
Ep

[
T∑
t=1

`tit

]
− 1

T

[
min
i=1

T∑
t=1

`ti

]
≤ ε + 2

√
ln(N)

T
.

In other words, the average loss of the algorithm quickly approaches the average loss of the best
expert exactly, at a rate of 1/

√
T . Note that this works against an arbitrary sequence of losses,

which might be chosen adaptively by an adversary. This is pretty incredible. And it will be the
source of the power of this framework in applications: we (the algorithm designer) can play the
role of the adversary to get the results that we want.

Corollary 2. There is an online decision-making algorithm that, for every adversary and ε > 0,
has expected time-averaged regret1 at most ε after at most (4 lnn)/ε2 time steps.

Recap of notation:

• N : the number of experts (actions)

• i, k: index of a specific expert (action)

• w: weights assigned to experts, a vector for each expert, indexed for each time step t and
expert i

• W t: the sum over all experts of weights at time t—W t =
∑N

i=1 w
t
i .

• p: a probability distribution over experts, indexed for each time step t and expert i, equal to
weights w normalized by the sum W—pti = wt

i/W
t.

• ε: update parameter

• `: adversary’s loss assignments for each time step and expert, `ti ∈ [0, 1].

• F : expected loss. F t =
∑N

i=1 p
t
i`

t
i.

1Time-averaged regret just means the regret, divided by T .



Proof. Let F t denote the expected loss of the MWU algorithm at time t. By linearity of expectation,
we have E[LT

MWU ] =
∑T

t=1 F
t. We also know that:

F t = (2)

Thus we want to lower bound the sum of the F t’s.
How does W t change between rounds? We know that W 1 = N , and looking at the algorithm,

we derive W t+1 as a function of W t and the expected loss (2)

W t+1 =

So by induction, we can write:

W T+1 =

Taking the log, and using the fact that ln(1− x) ≤ −x, we can write:

ln(W T+1) =

Similarly, we can unroll the update rule for our weights

wt+1
k = (3)

(using the fact that ln(1− x) ≥ −x− x2 for 0 < x < 1
2), we know that for every expert k:

ln(W T+1)



Combining these two bounds, we get that for all k:

for all k. Dividing by ε and rearranging, we get:


