DS 320 Algorithms for Data Science Lecture #23
Spring 2023 Prof. Kira Goldner

Multiplicative Weight Update

Online Decision-Making

At each time step t =1,2,...,T:

a decision-maker picks a probability distribution p’ over her experts or actions i =
1,...,N
an adversary picks a loss vector ¢ : A — [0,1]

t

an action i is chosen according to the distribution p?, and the decision-maker receives

loss £
the decision-maker learns #¢, the entire loss vector

The input arrives “one piece at a time.”

What should we compare to?
e We can’t compare to the best action sequence Zszl minﬁil ¢t or we may get no approximation.

e Instead, we compare to the best fixed action minlY; Y. ¢t

e Specifically, our goal is to minimize regret. For fixed loss vectors ¢', ..., ¢T. The regret of the

action sequence a!, ..., a” is

T N T
al) — i o 1
; (a") Igﬂ_l{l; @ (1)
& .o =
our algorithm best fixed action
Example 1 (Randomization Is Necessary for No Regret). Fix a deterministic online decision-
making algorithm. At each time step t, the algorithm commits to a single action a;. The obvious
strategy for the adversary is to set the loss of action at to 1, and the loss of every other action
to 0. Then, the cumulative loss of the algorithm is 1 while the cumulative loss of the best action

in hindsight is at least 7'(1 — %) Even when there are only 2 actions, for arbitrarily large T, the
worst-case regret of the algorithm is at least %

For randomized algorithms, the next example limits the rate at which regret can vanish as the
time horizon T' grows.

Example 2 (1/(Inn)/T Regret Lower Bound). Suppose there are n = 2 actions, and that we
choose each loss vector ¢! independently and equally likely to be (0,1) or (1,0). No matter how
smart or dumb an online decision-making algorithm is, with respect to this random choice of loss
vectors, its expected loss at each time step is exactly % and its expected cumulative loss is thus %
The expected cumulative loss of the best fixed action in hindsight is bv/T, where b is some constant
independent of T. This follows from the fact that if a fair coin is flipped T times, then the expected
number of heads is % and the standard deviation is %\/T

Fix an online decision-making algorithm 4. A random choice of loss vectors causes A to
experience expected regret at least by/T, where the expectation is over both the random choice of
loss vectors and the action realizations. At least one choice of loss vectors induces an adversary that
causes A to have expected regret at least byv/T, where the expectation is over the action realizations.

A similar argument shows that, with n actions, the expected regret of an online decision-making
algorithm cannot grow more slowly than bv/T Inn, where b > 0 is some constant independent of n
and T.

The Multiplicative Weights Algorithm

Multiplicative Weights (MW) Algorithm

initialize weights w} = 1 for every expert i =1 ..., N
for each time step t =1,2,...,7 do

let Wt = Zf\il w}, be the sum of the weights
choose expert k with probability pj}C = wz JWt
for each expert k, update weights

witt = wl - (1 —et})

Formally, we want an algorithm that works in the following framework:
1. In rounds 1,...,T, the algorithm chooses some expert i’.

2. Each expert i experiences a loss ¢ € [0,1]. The algorithm experiences the loss of the expert
it chooses: €f4 = Egt.

3. The total loss of expert 4 is LT = th1 ¢, and the total loss of the algorithm is Ep [Lywu] =
Ep [thl fﬁt] The goal of the algorithm is to obtain loss not much worse than that of the

best expert: min; LiT.

Theorem 1. For any sequence of losses, over the randomness of our algorithmic choices p,

Ep [REGRETMWU] < 24/ IH(N)T + eT.

That is, for any expert k

T T
1 ¢ 1 " In(V)
7Ep dod| < T S b +e+ i~
t=1 t=1
In particular, by setting € = % we get:
T T
1 " 1] . . In(N)
TEP ;Eit -7 Ilnzl{l;g’ <e+2 —

In other words, the average loss of the algorithm quickly approaches the average loss of the best
expert exactly, at a rate of 1/ VT. Note that this works against an arbitrary sequence of losses,
which might be chosen adaptively by an adversary. This is pretty incredible. And it will be the
source of the power of this framework in applications: we (the algorithm designer) can play the
role of the adversary to get the results that we want.

Corollary 2. There is an online decision-making algorithm that, for every adversary and € > 0,
has expected time-averaged regret' at most € after at most (41nn)/e? time steps.

Recap of notation:
e N: the number of experts (actions)
e i, k: index of a specific expert (action)

e w: weights assigned to experts, a vector for each expert, indexed for each time step t and
expert ¢

W*: the sum over all experts of weights at time ¢t—W?* = Zf\i L wh.

p: a probability distribution over experts, indexed for each time step ¢ and expert 7, equal to
weights w normalized by the sum W—p! = w!/W*.

€: update parameter
e (: adversary’s loss assignments for each time step and expert, £ € [0, 1].
o F: expected loss. F' = Zf\il pLet.

Proof. Let F' denote the expected loss of the MWU algorithm at time ¢. By linearity of expectation,
we have E[LY ;] = 32| F*. We also know that:

Ft:Zp§~€§:Zm;t-€§. (2)
=1 =1

Thus we want to lower bound the sum of the F*’s.

!Time-averaged regret just means the regret, divided by T

How does W change between rounds? We know that W' = N, and looking at the algorithm,
we derive W1 as a function of W' and the expected loss (2)

Wt+1 § wt+1

So by induction, we can write:

Taking the log, and using the fact that In(1 — x) < —z, we can write:

In(WT+) =) + Z In(1 —eF?) In(ab) = In(a) + In(b)

Sln(N)—ngt let eF' =

= In(N) — ¢E[Liwu]
Similarly, we can unroll the update rule for our weights
T
[<) (3)

t=1

Z‘H =wh - (1—eft) = T+1 = w}
~—

—_

(using the fact that In(1 — z) > —z — 22 for 0 < 2 < 1), we know that for every expert k:

N
ln(WT+1) > ln(wgﬂ) WT+1 ZwTJrl > wT+1
i=1
T
=> In(1—ef}) by (3)
t=1
T T
> el = (elh)? let efl, =

Combining these two bounds, we get that for all k:
In(N) — eE[LE] > —eL} — T
for all k. Dividing by € and rearranging, we get:

In(N
e

