
DS 320 Algorithms for Data Science Lecture #24 Worksheet
Spring 2023 Prof. Kira Goldner

Approximation Algorithms: Randomized and Online

So far, we’ve been sure to always analyze runtime and often space as well. Another thing that we
can add to our tradeoff is optimality.

Definition 1 (Approximation guarantee). We say that an algorithm obtains an α-approximation
to a maximization problem if in the worst case, the algorithm obtains at least Alg ≥ αopt for
α ∈ (0, 1).

Similarly, for a minimization problem, an algorithm obtains an α-approximation for α > 1 if
the algorithm’s cost is at most Alg ≤ αopt.

Many times, it’s useful to use randomness in our algorithm—to beat an adversary, or just because
random choices do a good job of handling all of the different instances out there with some proba-
bility each. We give our guarantees in expectation over the randomness in the algorithm, i.e., for a
maximization problem, we might say

Ep[Alg] ≥ αopt

where p represents the random choices in the algorithm.

Sometimes, it is our input instance I that is random, in which case, we compare how both our
algorithm do and how optdoes in expectation over the random input that arrives, so we might
prove a guarantee like

EI [Alg] ≥ αEI [opt].

Two probability essential facts to recall:

• Linearity of expectation: For any random variables X,xi and constants ci such that X =∑
i cixi, regardless of whether or not the xi’s are independent, E[X] =

∑
i E[xi]. (This is not

true for things like variance.)

• For a boolean (0/1) random variable x that is 1 with probability p, the expectation of x is
E[x] = p.

Randomized Algorithms

MAX SAT

Recall the definition of the 3-SAT problem: given a logical formula of n boolean variables x1, . . . , xn
in conjunctive normal form (CNF), that is,

φ = C1 ∧ · · · ∧ Cm

where Ci is one of m clauses each consisting of 3 disjoint literals, which are variables in either their
positive or negative form, for example, perhaps

C1 = (x1 ∨ x2 ∨ x3).

The goal of 3-SAT is to determine whether the formula φ can be satisfied.

Today, we look at the MAX SAT problem: very similar to 3-SAT, except that (1) each clause
Ci may consist of any number of literals, (2) each clause i cause a weight wi, and (3) rather than
satisfy φ, our objective is to satisfy the maximum weight of clauses

∑
iwiCi.

For our algorithm, we’ll try the simplest possible idea: set each boolean variable to true or false
with equal probability. This is the most basic idea in randomized algorithms, and often times, it’s
actually enough, as we’ll see today! In linear programs, we often had a {0, 1} decision variable—
true or false, take or don’t take into a set, something like this. For these variables, the idea of “set
to 1 with probability 1

2” (and thus to 0 with equal probability) often works!

Randomized algorithm for MAX SAT:

Approximation Ratio:

Proof.

MAX CUT

In the maximum cut problem (MAX CUT), the input is an undirected graph G = (V,E), along
with a nonnegative weight wij ≥ 0 for each edge (i, j) ∈ E. The goal is to partition the vertex set
into two parts, U and W = V rU , so as to maximize the weight of the edges whose two endpoints
are in different parts, one in U and one in W . We say that an edge with endpoints in both U and
W is in the cut. (In the case wij = 1 for each edge (i, j) ∈ E, we have an unweighted MAX CUT
problem.)

Randomized algorithm for MAX CUT:

Approximation Ratio:

Proof.

Online Algorithms

The Ski Rental Problem

You’re picking up a new hobby of skiing—you think. Every time that you rent skis, It costs $100
and B-hundred dollars to buy skis (that is, we can think in units of hundreds of dollars). Maybe
it’ll be a lifelong hobby and you should invest that B up front, or maybe it’s better to pay 1 each
time in case it doesn’t stick. Given that you don’t know how many times you’ll go skiing (say,
some adversary decides whether you like it or not based on whether you purchase or not—isn’t
that how it always feels?), how should you decide whether to buy or not so that you can give some
guarantee?

Definition 2 (Competitive ratio). In an online setting, for a maximization problem, we say the
competitive ratio of an algorithm is α if the algorithm obtains at least α-fraction of the offline
full-information optimum opt, that is,

Competitive Ratio =
Alg

opt
≥ α.

And for a minimization problem, the algorithm obtains at most α-times the offline opt: Alg ≤
αopt =⇒ :

Competitive Ratio =
Alg

opt
≤ α.

Essentially, the competitive ratio is just the approximation guarantee in an online setting.

Online algorithm for Ski Rental:

Competitive Ratio:

Proof.

Lower bound proof:

