
DS 320 Algorithms for Data Science Lecture #25: Final Exam Prep
Spring 2023 Exam: 11:59pm May 3 – 3pm May 10

The rules of the exam are as follows:

• You are free to consult class notes, the textbook, homework solutions, and any other resources
posted on the course website or in the “Resources” section of the course Piazza page. You
may not consult with other students or the internet. You may also ask Prof. Goldner
questions during office hours or virtually.

• Post clarifying questions as a private note on Piazza, or email them to Prof. Goldner. She
will respond within 24 hours. Direct all questions to her and not to TAs.

• Solutions must be typeset in LaTeX.

• When asked for a runtime in big-Oh notation, give the tightest and simplest possible bound
you can. If your algorithm is O(n) and also O(n2), just say it is O(n). If it is O(2n), it is
also O(n), so omit the factor of 2. And so on.

• Submit the exam via gradescope by 3:00pm on Wednesday, May 10. Late exams will not
be accepted.

• Do not discuss the exam with your classmates until after the due date, even if you have
finished.

• Whenever an algorithm is given, it must be accompanied with justification and a runtime.

Topics to be Covered

• Asymptotic runtime (O/Ω/Θ)

• Reading and writing pseudocode

• Sorting

• Induction

• Loop Invariants

• Data structures: stacks, queues, graphs

• Graph search

– Algorithms: DFS, BFS (unweighted shortest path)

• Greedy algorithms

– Algorithms: Dijkstra (non-negative weighted shortest path), caching, interval schedul-
ing, scheduling to minimize lateness, Huffman codes



– Techniques: Greedy stays ahead proof, Greedy exchange proof

• Divide & Conquer

– Algorithms: Mergesort, Closest pair of points, Integer Multiplication, Matrix Multipli-
cation

– Techniques: Prove the recurrence via induction, solve the runtime recurrence (recurrence
trees, master theorem)

• Dynamic Programming

– Algorithms: Bellman-Ford (all weighted shortest path), weighted interval scheduling,
segmented least squares, knapsack

– Techniques: Find the DP recurrence, proof via 7 part solution

• Linear Programming

– Techniques: formulating problems as LPs, taking duals, using properties from duality

Covered in much less depth:

• NP-Completeness

– Concepts: What is P, NP, NP-Hard, NP-Complete?

– Techniques: How do we relate hard problems to each other?

• Remaining lectures:

– Zero Sum Games

– Multiplicative Weight Update

– Randomized Algorithms

– Online Algorithms

Types of Questions Asked

a. Standard homework questions (give an algorithm, prove its correctness, analyze its runtime).

b. True/False about properties of algorithms, theory, or proofs.

(a) And justify why.

(b) And correct the statement if wrong.

c. Short answer, e.g., of counter examples, algorithms, proofs, and runtimes.



Final Exam Review

For all algorithms, always give:

(1) a clear enough description that someone could code it up without knowing any specific lan-
guage (even if it just an english description, it must be that clear to understand!),

(2) a justification of why it gives the guarantees it does, and

(3) an analysis of its running time.

Reiterating, “design and analyze” means given a word problem, introduce necessary notation,
design an algorithm to solve the problem, analyze runtime, and analyze accuracy (along with any
other problem specific requirements of the algorithm or solution).

Intuition and Reminders

Greedy:

• Appropriate when the next best choice (“myopic”) leads you to optimality.

• “Best” has to be by some metric—in interval scheduling, we scheduled by earliest finish time,
not by shortest job time, so picking which metric to use as “best” is important.

• You should be thinking: What if we just take the next available thing that meets X criteria?

• Pitfalls to look out for: when you can’t just look at each piece individually/successively, when
you need to be able to “look ahead” somehow.

Divide and Conquer:

• Appropriate when you have subproblems that can be solved independently.

• Usually for a D&C problem, brute force (e.g., check all pairs) should already be efficient
(polynomial) for the problem; you just want to speed up over that.

• Runtime recurrences T (n) = a T (n/b) + f(n) should remind you that you’re splitting the
problem in a subproblems of size n/b, solving them (further recursively), and then combining
the solutions, and at this level taking computing time f(n).

• You should be thinking: If each subproblem was already solved, this would be easy. I just
wish I could break it down smaller. . .

• Pitfalls to look out for: merging the solutions shouldn’t be too difficult, or the subproblems
probably aren’t independent.

Dynamic Programming:

• Appropriate when you have recursive subproblems that are not independent, and when there’s
a clever order that allows us to build up the answers to avoid recursive computation.



• You should be thinking: I can’t figure out whether this thing is in my optimal solution or
not!! Wait, so there are multiple cases to maximize over. . . either this thing is in my optimal
solution, or it’s not (could be more than two cases)—leads to your recurrence!

• Pitfalls to look out for: Is your recurrence (1) well-defined (base-cases), (2) built in the right
order (memo-table), and (3) correct (read it to yourself in English)?

Linear Programming:

• The fractional relaxation can be solved in polynomial-time—but not if we constrain to only
integral solutions! (Because we can express NP-Hard problems this way.)

• The objective function only improves with fractional solutions.

• The dual problem of a maximization gives an upper bound, and its objective function is equal
when they are both optimal. It is not an equivalent problem, however. It is a very different
problem, asking a different question, with different types of solutions. The values are just
equal when optimal (and only when optimal).

• Weak duality (upper bound), strong duality (equality), and complementary slackness (primal
constraint vs. dual variable and vice versa) are the parts of duality theory we talked about.

Homework 7 Part 2: Dual Greed

Re: Maximum Spanning Tree (Kruskal) and Shortest Path (Dijsktra).

a. Consider a connected undirected graph G = (V,E) in which each edge e has a weight we.
For a subset F ⊆ E, let κ(F ) denote the number of connected components in the subgraph
(V, F ).

Prove that the spanning trees of G correspond to the integer solutions to the following linear
program with the same objective function value (with decision variables {xe}e∈E):

max
∑
e∈E

wexe

subject to
∑
e∈F

xe ≤ |V | − κ(F ) ∀F∑
e∈E

xe = |V | − 1

xe ≥ 0 ∀ e ∈ E.

(While this linear program has a huge number of constraints, we are using it purely for the
analysis of Kruskal’s algorithm.)

Let xe be our decision variable indicating whether an edge e is in our spanning tree. Then,
recall the properties of a spanning tree. It is some set of edges T such that it “spans”



V , or is a maximal set of edges of G that does not contain a cycle. We will show that a
spanning tree is a valid solution to this LP.

Note that from this definition, we know |T | = |V | − 1, as if this were not the case then
the set would contain a cycle, or we could add another edge (per the above definition of
T ). Thus the second constraint is satisfied. For the first constraint, we can imagine that
we are in the process of building a spanning tree and currently have edges F , and can
think of κ(F )− 1 as the number of edges left to pick in order to span the graph, to form
a tree. If this constraint is not satisfied,

∑
e∈F xe > |V | − κ(F ), in which case, when we

add in the other edges, we will have xe + κ(F ) > V , which implies a cycle, since κ(F )
will then be 1 when we have formed a tree.

b. What is the dual of this linear program?

With yF as our dual variable for the first constraints and z as our dual variable for the
constraint, we get the following dual:

min
∑
F⊆E

(|V | − κ(F ))yF + (|V | − 1)z

subject to
∑
F :e∈F

yF + z ≥ we ∀ e ∈ E

yF , z ≥ 0 ∀F ⊆ E.

c. What are the complementary slackness conditions?

(1) For all F ⊆ E, either
∑

e∈F xe = |V | − κ(F ) or yF = 0. Additionally, either∑
e∈E xe = |V | − 1 or z = 0.

(2) For all e ∈ E, either
∑

F :e∈F yF + z = we or xe = 0.

e. Now consider the problem of computing a shortest path from s to t in a directed graph
G = (V,E) with a nonnegative cost ce on each edge e ∈ E. Prove that every simple s-t
path of G corresponds to an integer solution of the following linear program with the same
objective function value:1

min
∑
e∈E

cexe

subject to
∑

e∈δ+(S)

xe ≥ 1 ∀S ⊆ V with s ∈ S, t 6∈ S

xe ≥ 0 ∀ e ∈ E.
1Recall that δ+(S) denotes the edges sticking out of S.



(Again, this huge linear program is for analysis only.)

For any simple s-t path P , let xe be the decision variable indicating whether an edge e is
in our path P . For every subset S such that s ∈ S and t 6∈ S, the path P must eventually
have some edge e = (i, j) such that i ∈ S but j 6∈ S due to the fact that t /∈ S. Then the
constraint

∑
e∈δ+(S) xe ≥ 1 for this subset S will be satisfied by this edge. Hence every

simple s-t path is a valid solution to this LP.

f. What is the dual of this linear program?

With yS as our dual variable for the first constraints, we get the following dual:

max
∑

{S⊆V |s∈S,t6∈S}

yS

subject to
∑

{S⊆V |s∈S,t6∈S}:e∈δ+(S)

yS ≥ ce ∀ e ∈ E

yS ≥ 0 ∀ {S ⊆ V |s ∈ S, t 6∈ S}.

g. What are the complementary slackness conditions?

(1) For all S ⊆ V with s ∈ S, t 6∈ S, either
∑

e∈δ+(S) xe = 1 or yS = 0.

(2) For all e ∈ E, either
∑
{S⊆V |s∈S,t6∈S}:e∈δ+(S) yS = ce or xe = 0.

Review Problems

Part 1

You’re working at an investment company that asks you: given the opening price of the stock for
n consecutive days in the past, days days i = 1, 2, . . . , n, given the opening price of the stock p(i)
for each day i, on which day i should the company have bought and which later day j should they
have sold shares in order to maximize their profits? If there was no way to make money during the
n days, you should report this instead.

For example, suppose n = 3, p(1) = 9, p(2) = 1, p(3) = 5. Then you should return “buy on 2,
sell on 3” (buying on day 2 and selling on day 3 means they would have made $4 per share, the
maximum possible for that period).

Clearly, there’s a simple algorithm that takes time O(n2): try all possible pairs of buy/sell days
and see which makes them the most money. Your investment friends were hoping for something a
little better. Show how to find the correct numbers i and j in time O(n log n).



Whenever we see that brute-force is O(n2) and a speed-up is O(n log n), we should think of
divide and conquer.

A natural approach would be to consider the first n/2 days and the final n/2 days separately,
solving the problem recursively on each of these two sets, and then figure out how to get an
overall solution from this in O(n) time. This would give us T (n) ≤ 2T

(
n
2

)
+O(n), and hence

O(n log n).
Our main observation is that there are three cases when we split the days into two sets:

• We buy then sell within the first n/2 days—this is the optimal solution on the days
1, ..., n/2.

• We buy then sell within the last n/2 days—this is the optimal solution on the days
n/2 + 1, . . . , n.

• We buy in the first n/2 days and sell in the last n/2 days: then the day we buy i is the
minimum price among days 1, ..., n/2 and the day we sell j is the maximum among days
n/2 + 1, . . . , n.

The first two alternatives are computed in time T (n/2), each by recursion, and the third
alternative is computed by finding the minimum in the first half and the maximum in the
second half, which takes time O(n). Thus the running time T (n) satisfies

T (n) ≤ 2T
(n

2

)
+O(n),

as desired.
This is actually not the best running time achievable for this problem. In fact, one can find

the optimal pair of days in O(n) time using dynamic programming—do you see how? (But,
this question was definitely set up to get you to use D&C. Either answer would be correct.)

Algorithm 1 investing(p(1), . . . , p(n)).

Input: Prices p(i) for days i = 1, . . . , n.
if n = 1 then

return (Null, Null)
else

Let Buy1, Sell1 = investing(p(1), . . . , p(n/2)) and Buy2, Sell2 = investing(p(n/2+1), . . . , p(n))
Let Buy3 = argmin{p(1), . . . , p(n/2)} and Sell3 = argmax{p(n/2 + 1), . . . , p(n)}
if p(Sell3)− p(Buy3) < 0, then (Buy3, Sell3) = (Null, Null)
return (Buy, Sell) ∈ argmax{p(Sell1) - p(Buy1), p(Sell2) - p(Buy2), p(Sell3) - p(Buy3)}

end if

Claim 1. For any natural number n days, given prices p(1), . . . , p(n), the above algorithm
returns the optimal day Buy and day Sell to maximize profits p(Sell)− p(Buy).



Proof by strong induction on n.

Base Case: k = 1. When there is only 1 day, we cannot both buy and sell, so we return
Null for the days to buy and sell on—do not trade.

Inductive Hypothesis: Assume the algorithm correctly finds the best Buy and Sell days
in order if there are some, and otherwise returns (Null, Null) on k < n days for some n.

Inductive Case: Given n days of prices, the algorithm considers 3 cases: when we buy
and sell in the first n/2 days, when we buy and sell in the second n/2 days, and when we buy
in the first n/2 days and sell in the second n/2 days. In the third instance, the revenue will
be maximized by choosing the minimum price from the first n/2 days and the maximum from
the second n/2 days, as the algorithm does. The first instance requires the algorithm’s solution
the first n/2 days, which is correct by the inductive hypothesis, and the second instance the
algorithm’s solution on the second n/2 days, again correct by the inductive hypothesis. We
then take the maximum of these these profits and return the days that give this. If none of
these three options give profits, then we return Null—no days should be bought/sold on—which
is the same as the solutions on the first and second n/2 days. This implies that the algorithm
is correct.

Runtime Analysis: Let T (n) denote the algorithm’s worst-case runtime on two lists of
size n. There are two recursive subproblems of size n/2 and O(n) computational steps outside
the recursive call (finding min/max). Hence, we have the recurrence: T (n) = 2T (n/2) +O(n).
This can be solved to obtain T (n) = O(n log n): each layer of recursion has O(n) work, and
there are log n layers.

Part 2

Consider the problem of making change for n cents using the fewest number of coins. Assume that
each coin’s value is an integer.

a. Describe a greedy algorithm to make change consisting of quarters, dimes, nickels, and pen-
nies. Prove that your algorithm yields an optimal solution.

Algorithm: Starting with no coins, take the largest denomination coin given that it is
worth at most n minus how much the coins you’ve taken so far are worth.

Proof by Greedy Exchange. Let A = (c1, . . . , ck) be the coins generated by the greedy
algorithm and let O = (o1, . . . , om) be the coins generated by some other algorithm. Let
qA, qO be the number of quarters generated by each, and dimes dA, dO, and so on. We
can write

n = 25qA + 10dA + 5nA + pA and n = 25qO + 10dO + 5nO + pO.



By definition of the greedy algorithm, qA ≥ qO and n − 25qA < 25. If qO < qA and
n − 25qO ≥ 25, we exchange multiple smaller coins for one larger quarter, improving its
solution. We do this until qO = qA (or it already does), then we set aside quarters. We
then continue process on dimes, then nickels, until O = A, and we have only reduced the
number of coins, hence A is optimal.

b. Give a set of coin denominations (so not penny, nickel, dime, quarter) for which the greedy
algorithm does not yield an optimal solution. Your set should include a penny so that there
is a solution for every value of n.

Let the coin denominations be 1, 5, 7. Suppose you want to make change for n = 10.
The greedy algorithm will use one 7 coin and three 1 coins, for a total of four coins. It is
optimal to use two 5 coins.

Part 3

A palindrome is a nonempty string over some alphabet that reads the same forward and backward.
Examples of palindromes are: (1) all strings of length 1, (2) civic, (3) racecar, and (4) aibohphobia
(fear of palindromes). Give an efficient algorithm to find the longest palindrome that is a subse-
quence of a given input string. For example, given the input “character,” your algorithm should
return “carac.” What is the running time of your algorithm?

Subproblem: Let opt(i, j) be the length of the longest palindrome of the input string from
character i through character j.

Recurrence: opt(i, j) =

{
opt(i+ 1, j − 1) + 2 if i = j

max
{
opt(i+ 1, j),opt(i, j − 1)

}
otherwise.

Proof of Recurrence: Consider any subsequence from i to j—either the first character
is equal to the last, or it is not. If they are, the longest palindrome subsequence from i to
j contains these characters, so we count them (+2), remove them from the ends, and then
count the longest palindrome subsequence on the remaining i + 1 to j − 1. If not, then the
longest palindrome subsequence on i to j is either the longest palindrome subsequence on i to
j−1 or the longest palindrome subsequence on i+1 to j, as we know the ends are not the same.

Base Cases: opt(i, i) = 0 and opt(i, i + 1) = 1 for all i—all sequences of length 0 count 0
and all sequence of length 1 are length 1 palindromes.

Solution to Original Problem: opt(1,n)

Algorithm: See below.



Runtime: The algorithm fills a table of size O(n2), doing O(1) table lookups to fill each
entry. Base cases and returns are constant. The total runtime is therefore O(n2).

Computing a Solution: See below, return computePalindromeSol(String, 1, n, memo).

Algorithm 2 longestPalindromeSubsequence(String).

Input: A string String of length n.
Memo[ ][ ] = new int[n][n]
for ` from 0 to n− 1 do

for i from 1 to n− ` do
j = i+ `
if ` = 0 then

Memo[i][i] = 0
else if ` = 1 then

Memo[i][i+ 1] = 1
else if String[i] = String[j] then

Memo[i][j] = Memo[i+ 1][j − 1] + 2
else

Memo[i][j] = max{Memo[i+ 1][j], Memo[i][j − 1]}
end if

end for
end for
return Memo[1][n]

Algorithm 3 computePalindromeSol(String, i, j, memo).

Input: String, indices i ≤ j, and filled out memo table.
if i == j then

return Null
else if j == i+ 1 then

return String[i]
else

if String[i] = String[j] then
return String[i] + computePalindromeSol(String, i+ 1, j − 1, memo) + String[i]

else if Memo[i+ 1][j] > Memo[i][j − 1] then
return computePalindromeSol(String, i+ 1, j, memo)

else
return computePalindromeSol(String, i, j − 1, memo)

end if
end if


