Abstract Data Types and Depth-First Search

Let's review the main abstract data types that we might use when implementing various algorithms.

Linked Lists

Consider a list $L=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ where each x_{i} is an element in the list. In a singly-linked list, we keep a pointer to the first element of the list-that is, head $(L)=x_{1}$, and each element x_{i} has a pointer to the element after it, so $\operatorname{next}\left(x_{i}\right)=x_{i+1}$ and next $\left(x_{n}\right)=$ null.

There is no reason for singly-linked lists to be used in practice. You will never see them, with the exception of perhaps a coding interview question or a puzzle.

A doubly-linked list also has a pointer to the last element of the list $\left(\operatorname{tail}(L)=x_{n}\right)$ as well as pointers form each element to the previous element $\left(\operatorname{prev}\left(x_{i}\right)=x_{i-1}\right.$ and $\operatorname{prev}\left(x_{1}\right)=$ null $)$.

It's constant to do the actual insertion or deletion of an element, and at most linear $(O(n))$ to find an element by starting at the head or tail and moving along the list until it is found.

Queues

Queues are what's known as First-In, First-Out (FIFO) linked lists. They support the following additional operations:

- enqueue (q, x) : insert element x to the back of the queue q. Formally, $q=q \circ x$.
- dequeue (q) : delete the element at the front of the queue q and return it. Formally, $q=$ $\left[x_{2}, \ldots, x_{n}\right]$, return x_{1}.

Stacks

Stacks are what's known as Last-In, First-Out (LIFO) linked lists. They support the following additional operations:

- $\operatorname{push}(s, x)$: insert element x to the top (back) of the stack s. Formally, $s=s \circ x$.

- $\operatorname{pop}(s)$: delete the element at the top (back) of the stack s and return it. Formally, $s=$ $\left[x_{1}, \ldots, x_{n-1}\right]$, return x_{n}.

Graphs

Definition 1. A (directed) graph $G=(V, E)$ is defined by a set of vertices V and a set of (ordered) edges $E \subseteq V \times V$.

Definition 2. A directed edge is an ordered pair of vertices (u, v) and is usually indicated by drawing a line between u and v, with an arrow pointing towards v.

Definition 3. An undirected edge is an unordered pair of vertices $\{u, v\}$ and is usually indicated by drawing a line between u and v. It indicates the existence of ordered edges (u, v) and (v, u).

Typically undirected edges will also be notated (u, v) out of sloppiness.
Some conventions:

- We will refer to the number of vertices (or the size of the vertex set $|V|$) as n.
- We will refer to the number of edges (or the size of the edge set $|E|$) as m.
- Often we will simply name the vertices $V=\{1, \ldots, n\}$ so an edge (i, j) is an edge from the $i^{\text {th }}$ vertex to the $j^{\text {th }}$ vertex.

Figure 1: Left: An example undirected graph. $V=\{1,2,3\} . E=\{(1,2)\}$. Right: An example directed graph. $V=\{1,2,3,4,5,6,7\} . E=\{(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)\}$.

- You may also hear vertices referred to as "nodes" or edges referred to as "arcs."

Definition 4. We call vertices i and j adjacent or neighbors if there is an edge $(i, j) \in E$. In directed graphs, we may explicitly refer to out-neighbors $(\{j:(i, j) \in E\}$) or in-neighbors $(\{j:(j, i) \in E\})$.

Definition 5. The degree of a vertex v is the number of neighbors it has. That is, $d_{v}=\mid\{u$: $(v, u) \in E\} \mid$. For directed graphs, we may refer to a vertex's in-degree or out-degree, and its degree is the sum of these.

Definition 6. A path from u to w is a sequence of edges $e_{1}, e_{2}, \ldots, e_{k}$ such that $e_{1}=\left(u, v_{1}\right), e_{i}=$ $\left(v_{i-1}, v_{i+1}\right)$, and $e_{k}=\left(v_{i-1}, w\right)$. That is, the first edge starts at u, the last edge ends at w, and each proceeding edge ends where the previous edge starts.

Definition 7. We say that a pair of vertices are connected if there exists a path between them.
We see graphs all over; networks are an entire field of study! What can you represent with graphs?

- Transportation networks (roads, airlines)
- Communication networks (Bitcoin peer-to-peer network)
- Information network (internet with links)
- Social networks
- Dependency network (course prerequisites, food chain)

What graph problems do you know?

- Shortest path
- Traveling salesman
- Scheduling

Abstract Data Types for Graphs

There are two primary ways that we represent graphs in the computer.
Exercise: Ask yourself the following questions for both adjacency matrices and adjacency lists to fill out the pros and cons (below) for each graph ADT below:

- What is the worst-case runtime to look up a specific edge (i, j) ?
- What is the worst-case space needed to store the graph?
- What is the runtime to list all edges adjacent to i ? On average, per edge adjacent to i ?

Definition 8. An adjacency matrix for $G=(V, E)$ is an $n \times n$ binary matrix A where $A_{i j}=1$ if and only if $(i, j) \in E$. We use a 2 -dimensional array.

Pros of using an adjacency matrix:

- Look-up of a specific (i, j) edge is $O(1)$.

Cons of using an adjacency matrix:

- Space is $\Omega\left(n^{2}\right)$, independent of m. This can be very wasteful for sparse graphs where m is small.
- Listing all of i 's edges is $\Omega(n)$ time, which can again be wasteful if i has small degree.

Definition 9. An adjacency list for $G=(V, E)$ is an array A of length n where the $i^{\text {th }}$ entry contains a linked list of i 's neighbors. That is, j is in the list $A[i]$ if and only if $(i, j) \in E$.

Pros of using an adjacency list:

- Listing all of i 's edges is $O\left(d_{i}\right)$ time, hence $O(1)$ per neighbor.
- Space is $O(n+m)$.

Cons of using an adjacency list:

- Look-up of a specific (i, j) edge is $O\left(d_{i}\right)=O(n)$.

