
DS 320 Algorithms for Data Science Lecture #6
Spring 2023 Prof. Kira Goldner

Continuation of Lecture 4: BFS and Preorder/Postorder

Claim 1. If (u, v) ∈ E then postorder(u) < postorder(v) ⇐⇒ (u, v) is a back edge.

Proof. If (u, v) ∈ E, then before u is popped off of the stack, we could have pushed v onto the
stack via (u, v). (⇐) But if (u, v) is a backedge and not a tree edge, it must already be on the stack
underneath u, and thus will pop after u. (⇒) Or, if postorder(u) < postorder(v), (u, v) cannot be a
tree edge or we’d push and pop v after pushing u, and thus we’d have postorder(v) < postorder(u),
a contradiction. Then (u, v) must be a backedge.

Claim 2. G = (V,E) has a cycle ⇐⇒ the DFS tree of G yields a back edge.

Proof. If (u, v) is a back edge, then (u, v) together with the path from v to u in the DFS forest
form a cycle.
Conversely, for any cycle in G = (V,E), consider the vertex assigned the smallest postorder number.
Then the edge leaving this vertex in the cycle must be a back edge by Claim 1, since it goes from
a lower postorder number to a higher postorder number.

Application: Topological Sort

Figure 1: Top sort example graph from CLRS.

Theorem 1. G has a topological order ⇐⇒ G is a DAG.

Proof. (⇒) Topological ordering means only edges (i, j) ∈ E where i < j. Consider the smallest i
in the cycle. There exists an edge (j, i) in the cycle for j > i. Contradiction.

(⇐) If there’s a DAG, this implies that there exists a node with no incoming edges. Otherwise,
one could backtrack, and after n steps, would find a cycle.

Topological Sort Algorithm:

• Naive algorithm: Recursively remove a node with no incoming edges. T (n) = O(n2).

• Or, run DFS to assign postorder times, and then sort the DFS forest by decreasing postorder.
T (n) = O(n + m).

Theorem 2. If the tasks are scheduled by decreasing postorder number, then all precedence con-
straints are satisfied.

Proof. If G is acyclic then the DFS tree of G produces no back edges by Claim 2. Therefore by
Claim 1, (u, v) ∈ G implies postorder(u) > postorder(v). So, if we process the tasks in decreasing
order by postorder number, when task v is processed, all tasks with precedence constraints into v
(and therefore higher postorder numbers) must already have been processed.

Introduction to Greedy: Shortest Path

Say we want to find the shortest path from home to any other point in the city. How might we do
that? One way would be to use BFS.

But, what if there’s congestion on the roads? That is, what if the graph is weighted?

Definition 1. Let we (or wuv) denote the weight of edge e (or (u, v)).

We can think of this as the length of the edge, or the time (or cost) to traverse it.

Question: Given a graph G, how can we find the shortest (least-weight) path from s to any other
vertex v?

Algorithm 1 Dijkstra’s Algorithm(G,w)

Input: Graph G = (V,E) and weights w.
Let S be the set of explored nodes
for each u ∈ S, store a distance d(u)
Initially S = {s} and d(s) = 0
while S 6= V do

let d′(v) = min(u,v)∈E,u∈S d(u) + wuv

select v ∈ argminv/∈Sd
′(v)

add v to S and set d(v) = d′(v)
end while

Let Pv denote the shortest path to v from s—that is, Pv = Pu ∪ (u, v) when v ∈ argminv/∈Sd
′(v)

and (u, v) ∈ argmin(u,v)∈E,u∈Sd(u) + wu,v.

Figure 2: A weighted graph G (left) and the shortest path from s calculated for each vertex (right).

Greedy Stays Ahead

There are four main steps for a greedy stays ahead proof.

Step 1: Define your solutions. Describe the form your greedy solution takes, and what form
some other solution takes (possibly the optimal solution). For example, let A be the solution
constructed by the greedy algorithm, and let O be a (possibly optimal) solution.

Step 2: Find a measure. Find a measure by which greedy stays ahead of the other solution you
chose to compare with. Let a1, . . . , ak be the first k measures of the greedy algorithm, and
let o1, . . . , om be the first m measures of the other solution (m = k sometimes).

Step 3: Prove greedy stays ahead. Show that the partial solutions constructed by greedy are
always just as good as the initial segments of your other solution, based on the measure you
selected.

• For all indices r ≤ min(k,m), prove (often by induction) that ar ≥ or or that ar ≤ or,
whichever the case may be. Don’t forget to use your algorithm to help you argue the
inductive step.

Step 4: Prove optimality. Prove that since greedy stays ahead of the other solution with respect
to the measure you selected, then it is optimal.

Proof of Dijkstra

Then we prove the following via a “greedy stays ahead”-style induction.

Lemma 1. Consider the set S at any point in the algorithm’s execution. For each u ∈ S, Pu is a
shortest s− u path.

(Proof of Correctness: When the algorithm terminates, S contains all nodes, thus by Lemma 1,
we’ll have found shortest paths from s to all nodes.)

Proof. By induction on |S|.
Base case (|S| = 1): |S| = 1, so S = {s} and d(s) = 0.
Inductive Hypothesis: Suppose the claim holds for some k ≥ 1.
Inductive Step (|S| = k + 1): The algorithm grows to |S| = k + 1 by adding some node v. Let

(u, v) be the final edge on Pv. By the IH, Pu is the shortest s− u path for all u ∈ S.
Consider any other s − v path P . It must leave S somewhere—call (x, y) the edge that first

crosses. But P cannot be shorter than Pv, as it contains Px and (x, y), and Dijkstra could have
just added y to S with this Py if it were shortest, but instead it chose Pu + (u, v) as shorter.

Figure 3: Illustration of the argument in the inductive step.

Dijkstra is really continuous/waterfilling BFS.

