
DS 320 Algorithms for Data Science Lecture #7
Spring 2023 Prof. Kira Goldner

Greedy I: Proving Correctness of Dijkstra for Shortest Path

A comment: BFS starting from some node s returns the shortest distance (in an unweighted graph)
to every other node in the graph. To prove this, use the fact that if d(x, y) is the shortest distance
from u to v, then if there’s an edge (u, v) ∈ E, for any node x, d(x, u) ≤ d(x, v) + 1. (Why is this
true?) With this, use induction and the BFS code. Now, returning to Dijkstra’s algorithm and
weighted graphs.

Algorithm 1 Dijkstra’s Algorithm(G,w)

Input: Graph G = (V,E) and weights w.
Let S be the set of explored nodes
for each u ∈ S, store a distance d(u)
Initially S = {s} and d(s) = 0
while S 6= V do

let d′(v) = min(u,v)∈E,u∈S d(u) + wuv

select v ∈ argminv/∈Sd
′(v)

add v to S and set d(v) = d′(v)
end while

Let Pv denote the shortest path to v from s—that is, Pv = Pu ∪ (u, v) when v ∈ argminv/∈Sd
′(v)

and (u, v) ∈ argmin(u,v)∈E,u∈Sd(u) + wu,v.

Lemma 1. Consider the set S at any point in the algorithm’s execution. For each u ∈ S, Pu is a
shortest s− u path.

(Proof of Correctness: When the algorithm terminates, S contains all nodes, thus by Lemma 1,
we’ll have found shortest paths from s to all nodes.)

Proof. By induction on |S|.

Base case (|S| = 1): |S| = 1, so S = {s} and d(s) = 0.

Inductive Hypothesis: Suppose the claim holds for some k ≥ 1.

Inductive Step (|S| = k + 1): The algorithm grows to |S| = k + 1 by adding some node v. Let
(u, v) be the final edge on Pv. By the IH, Pu is the shortest s→ u path for all u ∈ S.

Consider any other s → v path P . It must leave S somewhere—call (x, y) the edge that first
crosses. But P cannot be shorter than Pv, as it contains Px and (x, y), and Dijkstra could have
just added y to S with this Py if it were shortest, but instead it chose Pu + (u, v) as shorter.

Dijkstra is really continuous/waterfilling BFS.

Figure 1: Illustration of the argument in the inductive step.

Greedy II: Interval Scheduling

Suppose you are given n jobs to schedule on a machine. Each job i (where i ∈ {1, . . . , n}) has
a start time si and a finish time fi. You would like to schedule as many jobs as possible given
that the machine can only process one job at a time, and the jobs must run from their start time
to finish time uninterrupted to be processed. That is, the machine cannot process two jobs that
overlap.

What greedy algorithm should you use to schedule the jobs? By what metric is it greedy? (See
Step 2.) Here are some ideas.

• Shortest jobs. Counterexample, with red optimal solution and blue greedy solution:

• Earliest start time. Counterexample, with red optimal solution and blue greedy solution:

• Fewest conflicts. Counterexample, with red optimal solution and blue greedy solution:

• Earliest finish time. This is the correct metric that we will prove is optimal.

Prove that your algorithm is optimal by a Greedy-Stays-Ahead proof.

Step 1: Define your solutions. Describe the form your greedy solution takes, and what form
some other solution takes (possibly the optimal solution). For example, let A be the solution
constructed by the greedy algorithm, and let O be a (possibly optimal) solution.

Let A = {i1, . . . , ik} be the set of requests selected by our greedy algorithm, in the order in which
they were added. Let O = {j1, . . . , jm} be the requests selected by an optimal solution, ordered by
their finish times.

Step 2: Find a measure. Find a measure by which greedy stays ahead of the other solution you
chose to compare with. Let a1, . . . , ak be the first k measures of the greedy algorithm, and
let o1, . . . , om be the first m measures of the other solution (m = k sometimes).

We will compare A and O by their jobs’ finish times, that is, we define the measures ar = f(ir)
and or = f(jr) for all r ≤ k, and we show that for all r ≤ k, ar ≤ or (i.e. that f(ir) ≤ f(jr)). This
can be shown by induction on r.

Step 3: Prove greedy stays ahead. Show that the partial solutions constructed by greedy are
always just as good as the initial segments of your other solution, based on the measure you
selected.

• For all indices r ≤ min(k,m), prove (often by induction) that ar ≥ or or that ar ≤ or,
whichever the case may be. Don’t forget to use your algorithm to help you argue the
inductive step.

Formally, for all r ≤ k, we will prove the claim that ar ≤ or by induction. (If you want, you can
call this P (r), the property for r that we aim to prove.) We want to show that this (P (r)) is true
for all 1 ≤ r ≤ k.

Base Case (r = 1): Since the algorithm selects the job with the earliest finish time, it must be the
case that a1 = f(i1) ≤ f(j1) = o1.

Inductive Hypothesis: Suppose that the claim holds for some fixed r − 1 with r > 1, that is, that
ar−1 = f(ir−1) ≤ f(jr−1) = or−1.

Inductive Step (r =: Now we prove that P (r) is true using the IH that P (r−1) is true. That is, we
prove that ar ≤ or. Recall that by the inductive hypothesis, f(ir−1) ≤ f(jr−1), and so any jobs that
are compatible with the first r − 1 jobs in the optimal solutions are certainly compatible with the
first r− 1 jobs of our greedy solution. Therefore, we could add jr to our greedy solution, and since
we take the compatible job with the smallest finish time, it must be the case that f(ir) ≤ f(jr),
that is, that ar ≤ or, as desired.

Thus we have shown that for all r ≤ k, f(ir) ≤ f(jr).

Step 4: Prove optimality. Prove that since greedy stays ahead of the other solution with respect
to the measure you selected, then it is optimal.

Our inductive claim implies that, in particular, f(ik) ≤ f(jk). If A is not optimal, then it must be
the case that m > k, and so there is a job jk+1 in O that is not in A. This job must start after O’s
kth job finishes at time f(jk), and hence after f(ik). But then this job is compatible with all the
jobs in A, and so A would have added it during the greedy algorithm. This is a contradiction, and
thus A has as many elements as O.

(Step 5: Analyze runtime.) This is always our last step.

The algorithm begins by sorting the n requests in order of finishing time, which takes time
O(n log n). Each time we select an interval, we proceed past any incompatible intervals in our
list; that is, we proceed through our list exactly once. This part of the algorithm takes time O(n);
therefore, the total running time is O(n log n).

