
DS 320 Algorithms for Data Science Lecture #1
Spring 2024 Prof. Kira Goldner

Covered in introduction slides:

• Course policies (also in syllabus).

• Course learning objectives and what to expect in this class (also in FAQ).

• Sample of content we’ll cover.

Announcement:

• Homework 0 on Gradescope due Tuesday 11:59pm. Answer all the questions and get 100%
toward participation.

Runtime Review

When we analyze runtime, we’ll do an informal accounting. We’ll count basic operations (algebra,
array assignment, etc) as constant time.1

We will analyze the runtime of the following algorithm:

Algorithm 1 FindMinIndex(B[t+ 1, n]).

Let MinIndex = t+ 1.
for i = t+ 1 to n do

if B[i] < B[MinIndex] then
MinIndex = i.

end if
end for
return MinIndex.

Each of the following lines is a unit (constant-time) operation:

• Let MinIndex = t+ 1.

• if B[i] < B[MinIndex] then

• MinIndex = i.

The for-loop runs n − t times (notice that both n and t are variables as they are in our input).
Thus the runtime of this algorithm is O(n− t).

1This isn’t quite right—for example, multiplication of large numbers should scale with the bit complexity—but is
a good approximation for us. We will analyze runtime by counting these operations.



Asymptotic Notation

Definition 1 (Upper bound O(·)). For a pair of functions f, g : N → R, we write f ∈ O(g(n)) if
there exist (∃) constants c1, c2 such that for all (s.t. ∀) n ≥ c1,

f(n) ≤ c2g(n).

We’ll often write f(n) = O(g(n)) because we are sloppy.

Translation: For large n (at least some c1), the function g(n) dominates f(n) up to a constant factor.

Examples:

• 1 ∈ O(n). This is because 1 ≤ 1 · n (so c2 = 1) for all n ≥ 1 = c1.

• n ∈ O(n2 ). This is because n ≤ 2 · n2 (so c2 = 2) for all n ≥ 1 = c1.

Definition 2 (Lower bound Ω(·)). For a pair of functions f, g : N → R, we write f ∈ Ω(g(n)) if
there exist constants c1, c2 such that for all n ≥ c1,

f(n) ≥ c2g(n).

Example: n ∈ Ω(n+ 7). This is because n ≥ 1
2 · (n+ 7) (so c2 = 1

2) for all n ≥ 7 = c1.

Definition 3 (Tight bound Θ(·)). For a pair of functions f, g : N → R, we write f ∈ Θ(g(n)) if
f ∈ O(g(n)) and f ∈ Ω(g(n)).

Exercise: True or False?

f(n) g(n) O(g(n)) Ω(g(n)) Θ(g(n))

106n3 + 2n2 − n+ 10 n3 T T T√
n+ log n

√
n T T T

n(log n+
√
n)

√
n F T F

n n2 T F F

Example solution: Let f(n) = 106n3 + 2n2 − n+ 10. For c2 = (106 + 12),

106n3 + 2n2 − n+ 10 ≤ c2n
3

for all n ≥ 1, hence it is true that f(n) = O(n3).
For c2 = 1, 106n3 + 2n2 − n+ 10 ≤ c2n

3, hence it is true that it is f(n) = Ω(n3).
Since f(n) = O(n3) and f(n) = Ω(n3), then f(n) = Θ(n3) as well.



Definition 4 (Strict upper bound o(·)). For a pair of functions f, g : N→ R, we write f ∈ o(g(n))
if

lim
n→∞

f(n)

g(n)
= 0,

or equivalently, for any constant c2 > 0, there exists a constant c1 such that for all n ≥ c1,

f(n) < c2g(n).

Definition 5 (Strict lower bound ω(·)). For a pair of functions f, g : N→ R, we write f ∈ ω(g(n))
if

lim
n→∞

f(n)

g(n)
=∞,

or equivalently, for any constant c2 > 0, there exists a constant c1 such that for all n ≥ c1,

f(n) > c2g(n).

Asymptotic Properties

• Multiplication by a constant:

If f(n) = O(g(n)) then for any c > 0, c · f(n) = O(g(n)).

• Transitivity:

If f(n) = O(h(n)) and h(n) = O(g(n)) then f(n) = O(g(n)).

• Symmetry:

If f(n) = O(g(n)) then g(n) = Ω(f(n)).

If f(n) = Θ(g(n)) then g(n) = Θ(f(n)).

• Dominant Terms:

If f(n) = O(g(n)) and d(n) = O(e(n)) then f(n) + d(n) = O(max{g(n), e(n)}). It’s fine to
write this as O(g(n) + e(n)).

Common Functions

• Polynomials: a0 + a1n+ · · ·+ adn
d is Θ(nd) if ad > 0.

• Polynomial time: Running time is O(nd) for some constant d independent of the input size
n.

• Logarithms: loga n = Θ(logb n) for all constants a, b > 0. This means we can avoid specifying
the base of the logarithm.

For every x > 0, log n = o(nx). Hence log grows slower than every polynomial.

• Exponentials: For all r > 1 and all d > 0, nd = o(rn). Every polynomial grows slower than
every exponential



• Factorial: By Sterling’s formula, factorials grow faster than every exponential:

n! = (
√

2πn)
(n
e

)n
(1 + o(1)) = Θ(nn) = 2Θ(n logn).


