Dynamic Programming III: Segmented Least Squares

The Problem

We are given a set of points $\left\{p_{1}=\left(x_{1}, y_{2}\right), p_{2}=\left(x_{2}, y_{2}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right)\right\}$ sorted by x-coordinate. Our goal is to fit a (segmented) line to P with least squares error.

What is "error" here? We use square error (SSE) from any line we use. That is, if our line is determined by slope a and y-intercept b, then our SSE would be

$$
S S E=\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2} .
$$

Using calculus, we can derive that this is minimized when we set

$$
a=\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}} \quad \text { and } \quad b=\frac{\sum_{i} y_{i}-a \sum_{i} x_{i}}{n} .
$$

But what if we can use as many segments as we want, just with a penalty c for each additional segment? How should we decide on the number of segments, and on what the segments should look like?

Our goal is to partition P into some C contiguous segments with minimal least squares error when there is a penalty c for each segment.

Making the Key Observation

The last point p_{n} belongs to a single segment which must begin somewhere. Where does it begin? In each case, what does the optimal solution look like?

Step 1: The Subproblem

Let $\operatorname{OPt}(i)$ denote the optimum solution for the points p_{1}, \ldots, p_{i}, and $\operatorname{OPt}(0)=0$. Let $e_{j, i}$ denote the minimum error of any line with respect to points p_{j}, \ldots, p_{i} (i.e., find the line using the calculus solution up above).

Step 2: The Recurrence

If the last segment of the optimal partition is p_{i}, \ldots, p_{n}, then: $\operatorname{OPT}(n)=e_{i, n}+c+\operatorname{OPT}(i-1)$.
Hence

$$
\operatorname{OPT}(i)=\min _{1 \leq j \leq i}\left\{e_{j, i}+c+\operatorname{OPT}(j-1)\right\} .
$$

where we use the segment p_{j}, \ldots, p_{i} if and only if $j \in \operatorname{argmin}$ of the above.

Step 3: Prove that your recurrence is correct. In the optimal solution on i points, i must be in a segment that starts at the $j \in \operatorname{argmin}$ of the above. OPT $(j-1)$ gives the optimal segmented SSE for the first $i-1$ points and $e_{j, i}$ gives the optimal SSE for the segment from j to i, so adding these two error terms plus the penalty of c for using the one additional segment from j to i is the valid cost of this solution. If i instead was in a different segment that started at a different j^{\prime}, then for the same reasons, the cost of this solution would be $\operatorname{OPT}\left(j^{\prime}-1\right)+c+e_{j^{\prime}, i}$, but this term did not minimize the above which is why it was not selected, hence it cannot have optimal (minimal) error. Hence the above recurrence is correct.

Step 4: State and prove your base cases. $\operatorname{OPT}(0)=0$ is enough to get us off the ground. Notice that OPT(1) is then well-defined.

Step 5: State how to solve the original problem. This is once again $\operatorname{OPt}(n)$.

Step 6: The Algorithm

```
Algorithm \(1 \operatorname{SegmentedLeastSquares}\left(p_{1}, \ldots, p_{n}\right)\)
    Input: Set of \(n\) points \(p_{1}, \ldots p_{n}\).
    Initialize memo array \(M\) of length \(n+1\) with \(M[0]=0\).
    for all pairs \(j \leq i\) do
        Compute \(e_{j, i}\) for the segment \(p_{j}, \ldots, p_{i}\)
    end for
    for \(i=1, \ldots, n\) do
        \(M[i]=\min _{1 \leq j \leq i}\left\{e_{j, i}+c+M[j-1]\right\}\)
    end for
    return \(M[n]\)
```


Step 7: Running Time

The recurrence optimizes over n things, and we loop over n entries, so filling the memo takes $O\left(n^{2}\right)$ time. Solving for $e_{j, i}$ takes $O(n)$ time and there are $O\left(n^{2}\right)$ pairs of (j, i), so this takes $O\left(n^{3}\right)$ time, which is the dominant term for the algorithm.

```
Algorithm 2 FindSegments \((i)\)
    Input: Number of points \(n\).
    Initialize memo array \(M\) of length \(n+1\) with \(M[0]=0\).
    if \(i=0\) then
        return Null
    else
        Find an \(j\) that minimizes \(e_{j, i}+c+M[j-1]\)
        return the segment \(\left\{p_{j}, \ldots, p_{i}\right\}\) and \(\operatorname{FindSegments}(i-1)\)
    end if
```

