Dynamic Programming IV: Shortest Paths

The Problem

Given a graph G = (V, E) with any edge weights w_e for all $e \in E$, a source s, output the shortest s - v path for every $v \in V$.

Naïve Approach

Let N(v) be the neighbors of v.

- Subproblem: Let OPT(v) denote the length of the shortest path from s to v.
- Recurrence: $OPT(v) = \min_{u \in N(v)} OPT(u) + w_{(u,v)}$.
- Base Case: OPT(s) = 0.

What's wrong with this approach? List any issues you see:

The Bellman-Ford Algorithm

Main Idea: Impose a measure of progress—parametrize the subproblems.

More specifically:

- Consider a shortest path from $s \to u \to v \to t$ with k edges
- $s \to u \to v$ is a shortest $s \to v$ path with k-1 edges

Measure of progress: the number of edges in path. First compute all shortest paths with ≤ 1 edges. Then shortest paths with ≤ 2 edges. And so on, until we compute shortest paths of length $\leq n-1$.

Structural Observation:

Formal Description
State Your Subproblem:
State Your Recurrence:
Prove Your Recurrence:
State Your Base Cases:

Proof.

Present Your Algorithm:

Runtime:

- Size of table:
- Time to fill in table:

(How many table lookups?)

Total time:

Better Runtime Analysis

- How many row updates?
- How many table lookups per row update?
- \bullet Runtime =

Detecting Negative Cycles

Idea: Add an extra column (Column n) to the memo table.

Claim 1. There is a negative cycle in the graph if and only if Column $n \neq$ Column n-1.

<i>Proof.</i> (\Leftarrow) Suppose the graph has no negative cycles. Then by the Structural Observation,
(\Rightarrow) Suppose there is a negative cycle in the graph.
To detect negative cycles:
\bullet Run Bellman-Ford, add an n th column.
\bullet If Column $n=$ Column $n-1,$ return "No Negative Cycles"
• Otherwise, return that there's a negative cycle.
Space-Efficient Bellman-Ford
How much space does Bellman-Ford use?
Observation:
Improved algorithm:
Total space usage: