
DS 320 Algorithms for Data Science Lecture #3
Spring 2024 Prof. Kira Goldner

Abstract Data Types and Depth-First Search

Let’s review the main abstract data types that we might use when implementing various algorithms.

Linked Lists

Consider a list L = [x1, x2, . . . , xn] where each xi is an element in the list. In a singly-linked list,
we keep a pointer to the first element of the list—that is, head(L) = x1, and each element xi has a
pointer to the element after it, so next(xi) = xi+1 and next(xn) = null.

There is no reason for singly-linked lists to be used in practice. You will never see them, with
the exception of perhaps a coding interview question or a puzzle.

A doubly-linked list also has a pointer to the last element of the list (tail(L) = xn) as well as
pointers form each element to the previous element (prev(xi) = xi−1 and prev(x1) = null).

It’s constant to do the actual insertion or deletion of an element, and at most linear (O(n)) to
find an element by starting at the head or tail and moving along the list until it is found.

Queues

Queues are what’s known as First-In, First-Out (FIFO) linked lists. They support the following
additional operations:

• enqueue(q, x): insert element x to the back of the queue q. Formally, q = q ◦ x.

• dequeue(q): delete the element at the front of the queue q and return it. Formally, q =
[x2, . . . , xn], return x1.

Stacks

Stacks are what’s known as Last-In, First-Out (LIFO) linked lists. They support the following
additional operations:

• push(s, x): insert element x to the top (back) of the stack s. Formally, s = s ◦ x.

• pop(s): delete the element at the top (back) of the stack s and return it. Formally, s =
[x1, . . . , xn−1], return xn.

Graphs

Definition 1. A (directed) graph G = (V,E) is defined by a set of vertices V and a set of (ordered)
edges E ⊆ V × V .

Definition 2. A directed edge is an ordered pair of vertices (u, v) and is usually indicated by
drawing a line between u and v, with an arrow pointing towards v.

Definition 3. An undirected edge is an unordered pair of vertices {u, v} and is usually indicated
by drawing a line between u and v. It indicates the existence of ordered edges (u, v) and (v, u).

Typically undirected edges will also be notated (u, v) out of sloppiness.

Some conventions:

• We will refer to the number of vertices (or the size of the vertex set |V |) as n.

• We will refer to the number of edges (or the size of the edge set |E|) as m.

• Often we will simply name the vertices V = {1, . . . , n} so an edge (i, j) is an edge from the
ith vertex to the jth vertex.

Figure 1: Left: An example undirected graph. V = {1, 2, 3}. E = {(1, 2)}. Right: An example
directed graph. V = {1, 2, 3, 4, 5, 6, 7}. E = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7)}.

• You may also hear vertices referred to as “nodes” or edges referred to as “arcs.”

Definition 4. We call vertices i and j adjacent or neighbors if there is an edge (i, j) ∈ E. In directed
graphs, we may explicitly refer to out-neighbors ({j : (i, j) ∈ E}) or in-neighbors ({j : (j, i) ∈ E}).

Definition 5. The degree of a vertex v is the number of neighbors it has. That is, dv = |{u :
(v, u) ∈ E}|. For directed graphs, we may refer to a vertex’s in-degree or out-degree, and its degree
is the sum of these.

Definition 6. A path from u to w is a sequence of edges e1, e2, . . . , ek such that e1 = (u, v1), ei =
(vi−1, vi), and ek = (vk−1, w). That is, the first edge starts at u, the last edge ends at w, and each
proceeding edge ends where the previous edge starts.

Definition 7. We say that a pair of vertices are connected if there exists a path between them.

We see graphs all over; networks are an entire field of study! What can you represent with graphs?

• Transportation networks (roads, airlines)

• Communication networks (Bitcoin peer-to-peer network)

• Information network (internet with links)

• Social networks

• Dependency network (course prerequisites, food chain)

What graph problems do you know?

• Shortest path

• Traveling salesman

• Scheduling

Abstract Data Types for Graphs

There are two primary ways that we represent graphs in the computer.

Exercise: Ask yourself the following questions for both adjacency matrices and adjacency lists
to fill out the pros and cons (below) for each graph ADT below:

• What is the worst-case runtime to look up a specific edge (i, j)?

• What is the worst-case space needed to store the graph?

• What is the runtime to list all edges adjacent to i? On average, per edge adjacent to i?

Definition 8. An adjacency matrix for G = (V,E) is an n× n binary matrix A where Aij = 1 if
and only if (i, j) ∈ E. We use a 2-dimensional array.

Pros of using an adjacency matrix:

• Look-up of a specific (i, j) edge is O(1).

Cons of using an adjacency matrix:

• Space is Ω(n2), independent of m. This can be very wasteful for sparse graphs where m is
small.

• Listing all of i’s edges is Ω(n) time, which can again be wasteful if i has small degree.

Definition 9. An adjacency list for G = (V,E) is an array A of length n where the ith entry
contains a linked list of i’s neighbors. That is, j is in the list A[i] if and only if (i, j) ∈ E.

Pros of using an adjacency list:

• Listing all of i’s edges is O(di) time, hence O(1) per neighbor.

• Space is O(n + m).

Cons of using an adjacency list:

• Look-up of a specific (i, j) edge is O(di) = O(n).

