Lecture #1 Prof. Kira Goldner

Covered in introduction slides:

- Course policies (also in syllabus).
- Course learning objectives and what to expect in this class (also in FAQ).
- Sample of content we'll cover.

Announcement:

 $\bullet\,$ Homework 0 on Gradescope due Thursday 11:59pm. Answer all the questions and get 100% toward participation.

Runtime Review

When we analyze runtime, we'll do an informal accounting. We'll count basic operations (algebra, array assignment, etc) as constant time.¹

We will analyze the runtime of the following algorithm:

```
Algorithm 1 FindMinIndex(B[t + 1, n]).

Let MinIndex = t + 1.

for i = t + 1 to n do

if B[i] < B[MinIndex] then

MinIndex = i.

end if

end for

return MinIndex.
```

Each of the following lines is a unit (constant-time) operation:

- Let MinIndex = t + 1.
- if B[i] < B[MinIndex] then
- MinIndex = i.

The for-loop runs n - t times (notice that both n and t are variables as they are in our input). Thus the runtime of this algorithm is O(n - t).

¹This isn't quite right—for example, multiplication of large numbers should scale with the bit complexity—but is a good approximation for us. We will analyze runtime by counting these operations.

Asymptotic Notation

Definition 1 (Upper bound $O(\cdot)$). For a pair of functions $f, g : \mathbb{N} \to \mathbb{R}$, we write $f \in O(g(n))$ if there exist (\exists) constants c_1, c_2 such that for all (s.t. \forall) $n \geq c_1$,

$$f(n) \le c_2 g(n).$$

We'll often write f(n) = O(g(n)) because we are sloppy.

Translation: For large n (at least some c_1), the function g(n) dominates f(n) up to a constant factor.

Examples:

- $1 \in O(n)$. This is because $1 \le 1 \cdot n$ (so $c_2 = 1$) for all $n \ge 1 = c_1$.
- $n \in O(\frac{n}{2})$. This is because $n \le 2 \cdot \frac{n}{2}$ (so $c_2 = 2$) for all $n \ge 1 = c_1$.

Definition 2 (Lower bound $\Omega(\cdot)$). For a pair of functions $f, g : \mathbb{N} \to \mathbb{R}$, we write $f \in \Omega(g(n))$ if there exist constants c_1, c_2 such that for all $n \ge c_1$,

 $f(n) \ge c_2 g(n).$

Example: $n \in \Omega(n+7)$. This is because $n \ge \frac{1}{2} \cdot (n+7)$ (so $c_2 = \frac{1}{2}$) for all $n \ge 7 = c_1$.

Definition 3 (Tight bound $\Theta(\cdot)$). For a pair of functions $f, g : \mathbb{N} \to \mathbb{R}$, we write $f \in \Theta(g(n))$ if $f \in O(g(n))$ and $f \in \Omega(g(n))$.

Exercise: True or False?

f(n)	g(n)	O(g(n))	$\Omega(g(n))$	$\Theta(g(n))$
$10^6n^3 + 2n^2 - n + 10$	n^3	Т	Т	Т
$\sqrt{n} + \log n$	\sqrt{n}	Т	Т	Т
$n(\log n + \sqrt{n})$	\sqrt{n}	\mathbf{F}	Т	\mathbf{F}
n	n^2	Т	\mathbf{F}	\mathbf{F}

Example solution: Let $f(n) = 10^6 n^3 + 2n^2 - n + 10$. For $c_2 = (10^6 + 12)$,

$$10^6 n^3 + 2n^2 - n + 10 \le c_2 n^3$$

for all $n \ge 1$, hence it is true that $f(n) = O(n^3)$.

For $c_2 = 1$, $10^6 n^3 + 2n^2 - n + 10 \le c_2 n^3$, hence it is true that it is $f(n) = \Omega(n^3)$. Since $f(n) = O(n^3)$ and $f(n) = \Omega(n^3)$, then $f(n) = \Theta(n^3)$ as well.

Asymptotic Properties

• Multiplication by a constant:

If f(n) = O(g(n)) then for any c > 0, $c \cdot f(n) = O(g(n))$.

- Transitivity: If f(n) = O(h(n)) and h(n) = O(g(n)) then f(n) = O(g(n)).
- Symmetry:

If f(n) = O(g(n)) then $g(n) = \Omega(f(n))$. If $f(n) = \Theta(g(n))$ then $g(n) = \Theta(f(n))$.

• Dominant Terms:

If f(n) = O(g(n)) and d(n) = O(e(n)) then $f(n) + d(n) = O(\max\{g(n), e(n)\})$. It's fine to write this as O(g(n) + e(n)).

Common Functions

- Polynomials: $a_0 + a_1 n + \dots + a_d n^d$ is $\Theta(n^d)$ if $a_d > 0$.
- Polynomial time: Running time is $O(n^d)$ for some constant d independent of the input size n.
- Logarithms: $\log_a n = \Theta(\log_b n)$ for all constants a, b > 0. This means we can avoid specifying the base of the logarithm.

For every x > 0, $\log n = o(n^x)$. Hence log grows slower than every polynomial.

- Exponentials: For all r > 1 and all d > 0, $n^d = o(r^n)$. Every polynomial grows slower than every exponential
- Factorial: By Sterling's formula, factorials grow faster than every exponential:

$$n! = (\sqrt{2\pi n}) \left(\frac{n}{e}\right)^n (1 + o(1)) = \Theta(n^n) = 2^{\Theta(n \log n)}.$$

Strict Bounds

There are also strict bounds.

Definition 4 (Strict upper bound $o(\cdot)$). For a pair of functions $f, g : \mathbb{N} \to \mathbb{R}$, we write $f \in o(g(n))$ if for any constant $c_2 > 0$, there exists a constant c_1 such that for all $n \ge c_1$,

$$f(n) < c_2 g(n)$$

Definition 5 (Strict lower bound $\omega(\cdot)$). For a pair of functions $f, g : \mathbb{N} \to \mathbb{R}$, we write $f \in \omega(g(n))$ if for any constant $c_2 > 0$, there exists a constant c_1 such that for all $n \ge c_1$,

$$f(n) > c_2 g(n).$$