
DS 320 Algorithms for Data Science Lecture #11
Spring 2025 Prof. Kira Goldner and Jeffrey Considine

Divide & Conquer II: Closest Pair of Points

The Problem

Your input for the closest pair of points problem is a set P of n points in R2. Assume that all of
the x and y coordinates are distinct. The goal is to output a pair of points p1 and p2 minimizing
the Euclidean L2 distance d(p1, p2) =

√
(x2 − x1)2 + (y2 − y1)2.

This problem extremely common: in graphics, computer vision, robotics, scientific simulation, etc.

As we mentioned last time, Divide & Conquer is usually the way to come up with a more effi-
cient algorithm for a problem which already has a polynomial brute force solution. What’s the
näıve algorithm here and what is its running time?

Just compare all pairs of points: O(n2).

Step 1: Define your recursive subproblem.

Hint: An idea similar to mergesort works here.

In preprocessing, sort P by both x and y coordinate. Call these Px and Py. Divide the points
in half by x coordinate, where the first (left) half is L and the second (right) half is R.

The dividing line h will go through the rightmost point in L.

Step 2: Combine the solutions to your subproblems.

Given the solutions (closest pair) from your subproblems (make sure the parameters make sense),
how do you combine or compare these solutions to get the solution to our problem of size n?

The closest pair will be one of: (1) the closest pair from L, (2) the closest pair from R, or (3)
the closest pair across the halves. The solution to our subproblems will return the first two,
but how do we find the solution to (3) in order to compare these?

Computing the Closest Pair Across Halves

Idea: Narrow down the set of points we need to search.

Lemma 1. For subproblem solutions of closest pairs `∗0, `
∗
1 ∈ L and r∗0, r

∗
1 ∈ R, let

δ = min{ d(`∗0, `
∗
1) , d(r∗0, r

∗
1) }.

If ` ∈ L and r ∈ R and d(`, r) ≤ δ, then ` and r are within δ of h.

Proof.

Suppose some ` ∈ L and r ∈ R and d(`, r) ≤ δ. Then the distance in the x-coordinates |x`−xr|
must also be less than δ. If we call xh the x-coordinate of the line, then by definition of h,
x` ≤ xh < xr, hence it must also be the case that these distances |x` − xh| and |xh − xr| are at
most δ, that is, that r and ` fall within δ of the line h.

Definition 1. Let S = {p ∈ P : d(p, h) < δ} be the set of points within distance δ of the line h.

Note: We can compute S in linear time.

Lemma ?? implies that we only need to search S. Problem: Brute-force over S is O(n2) still.

Idea: Brute force more intelligently.

Lemma 2. Let Sy be a list of the points in S sorted by y-coordinate and let (s, s′) be closest pair
of points in P . If s, s′ ∈ S, then they cannot lie more than 15 positions apart in Sy.

(There are less than 15n such pairs, hence linear time to brute force!)

Proof.

a. Divide S into boxes of side-length δ/2.

b. Show: No two points can share a box.

If they did, they’re on the same side and they’re closer than δ apart, which is a contra-
diction to what we know about the closest pairs in L and R.

c. Show: If s and s′ are at least 16 positions apart in Sy, then they’re not the closest pair of
points.

If s and s′ are at least 16 positions apart in the list Sy (which is the list of points in S,
the points within δ-distance of h, sorted by y-coordinate), then they must be at least 3
rows of boxes apart. By part (b) we know that there cannot be more than one point in
a box, so even if the points are packed as closely as possible, they must each lie in their
own box, and thus two points that are 15 positions apart by y-coordinate, even when
most densely packed, must have at least three full rows of boxes between them. Then the
distance between these points d(s, s′) must be at least 3δ/2 > δ, and hence these points
are not closer than the closest pair in one of the halves.

Then we know that for a pair of points across halves (in S) to possibly be the closest
pair, they must be within 15 positions of each other when sorted by y-coordinate. We
simply check for closest pairs within these proximity, and there are only 15 · |S| ≤ 15n
such pairs, not n2, so it takes linear time to brute force to check if any are closest.

The Algorithm

Preprocessing: Generate Px and Py.

Algorithm 1 closest(Px, Py).

Input: Array Px of points in P sorted by x coordinate; array Py sorted by y coordinate.
if |P | ≤ 3 then // Base Case

return closest pair by brute force
end if
Construct Lx, Ly, Rx, Ry // Subproblem: Recursive calls on halves
(`∗0, `

∗
1) = closest(Lx,Ly)

(r∗0, r
∗
1) = closest(Rx,Ry)

Construct Sy
(s∗0, s

∗
1) = closest pair in Sy within 15 spots of each other

return closest of (`∗0, `
∗
1), (r∗0, r

∗
1), (s∗0, s

∗
1)

Runtime

T (n) = a T (n/b) +O(f(n)) a = b = f(n) =

⇒ T (n) =

T (n) = 2T (n/2) +O(n)

⇒ T (n) = n log n.

Proof of Correctness

Proof. We prove the correctness by induction on the size of P .

The base case of |P | ≤ 3 is clear by the algorithm.

IH: For sizes smaller than |P |, the closest pairs are computed correctly by recursion.

IS: By Lemma 1, the remainder of the algorithm correctly determines whether any pair
of points in S is at distance less than δ, and if so, returns the closest such pair. Now the closest
pair in P either has both elements in one of L or R, or it has one element in each. In the
former case, the closest pair is correctly found by the recursive call (IH). In the latter case, this
pair is at distance less than δ, and it is correctly found by the remainder of the algorithm.

