
DS 320 Algorithms for Data Science Lecture #14 Worksheet
Spring 2025 Prof. Kira Goldner and Jeffrey Considine

Dynamic Programming II: Knapsack

The Problem

Imagine that you are on a hike and you find a cave filled with riches: n riches to be exact.

Each item i in the cave has some value vi. But it also has a weight wi to it, and your hiking
pack (or knapsack) can only hold up to a total weight C.

Our goal is to pick which items S to take to maximize the value
∑

i∈S vi in your pack, but en-
sure that the weight doesn’t exceed the maximum allotted,

∑
i∈S wi ≤ C.

Making the Key Observation

What key observation can we make that will help us move toward our subproblem and recurrence?
A reminder of our other key observations:

Scheduling: Either the last job is in the solution, or it isn’t. (Then what does that mean for
the rest of the schedule and the maximum weight?)

Now for knapsack:



Step 1: The Subproblem

Step 2: The Recurrence

Step 3: Prove that your recurrence is correct.

Step 4: State and prove your base cases.

Step 5: State how to solve the original problem.



Step 6: The Algorithm

Step 7: Running Time

a. Pre-processing: computing base cases, sorting, etc.

b. Filling in memo: This can be further broken down into

(a) Number of entries of your memo table.

(b) Time to fill each entry. Be careful of things like taking maxes over n elements!

c. Postprocessing: Return statement, etc.

Definition 1. An algorithm is pseudopolynomial time if its runtime is polynomial in the numerical
values of the inputs, but not the number of bits required to express them.


