
DS 320 Algorithms for Data Science Lecture #15
Spring 2025 Prof. Kira Goldner and Jeffrey Considine

Dynamic Programming III: Segmented Least Squares

The Problem

We are given a set of points {p1 = (x1, y2), p2 = (x2, y2), . . . , pn = (xn, yn)} sorted by x-coordinate.
Our goal is to fit a (segmented) line to P with least squares error.

What is “error” here? We use square error (SSE) from any line we use. That is, if our line is
determined by slope a and y-intercept b, then our SSE would be

SSE =
n∑

i=1

(yi − axi − b)2.

Using calculus, we can derive that this is minimized when we set

a =
n
∑

i xiyi − (
∑

i xi)(
∑

i yi)

n
∑

i x
2
i − (

∑
i xi)

2
and b =

∑
i yi − a

∑
i xi

n
.

But what if we can use as many segments as we want, just with a penalty c for each additional
segment? How should we decide on the number of segments, and on what the segments should look
like?

Our goal is to partition P into some C contiguous segments with minimal least squares error
when there is a penalty c for each segment.

Making the Key Observation

The last point pn belongs to a single segment which must begin somewhere. Where does it begin?
In each case, what does the optimal solution look like?

Step 1: The Subproblem

Let opt(i) denote the optimum solution for the points p1, . . . , pi, and opt(0) = 0. Let ej,i denote
the minimum error of any line with respect to points pj , . . . , pi (i.e., find the line using the calculus
solution up above).



Step 2: The Recurrence

If the last segment of the optimal partition is pi, . . . , pn, then: opt(n) = ei,n + c + opt(i− 1).
Hence

opt(i) = min
1≤j≤i

{ej,i + c + opt(j − 1)}.

where we use the segment pj , . . . , pi if and only if j ∈ argmin of the above.

Step 3: Prove that your recurrence is correct. In the optimal solution on i points, i must
be in a segment that starts at the j ∈ argmin of the above. opt(j−1) gives the optimal segmented
SSE for the first i− 1 points and ej,i gives the optimal SSE for the segment from j to i, so adding
these two error terms plus the penalty of c for using the one additional segment from j to i is the
valid cost of this solution. If i instead was in a different segment that started at a different j′, then
for the same reasons, the cost of this solution would be opt(j′ − 1) + c + ej′,i, but this term did
not minimize the above which is why it was not selected, hence it cannot have optimal (minimal)
error. Hence the above recurrence is correct.

Step 4: State and prove your base cases. opt(0) = 0 is enough to get us off the ground.
Notice that opt(1) is then well-defined.

Step 5: State how to solve the original problem. This is once again opt(n).

Step 6: The Algorithm

Algorithm 1 SegmentedLeastSquares(p1, . . . , pn)

Input: Set of n points p1, . . . pn.
Initialize memo array M of length n + 1 with M [0] = 0.
for all pairs j ≤ i do

Compute ej,i for the segment pj , . . . , pi
end for
for i = 1, . . . , n do

M [i] = min1≤j≤i{ej,i + c + M [j − 1]}
end for
return M [n]

Step 7: Running Time

The recurrence optimizes over n things, and we loop over n entries, so filling the memo takes O(n2)
time. Solving for ej,i takes O(n) time and there are O(n2) pairs of (j, i), so this takes O(n3) time,
which is the dominant term for the algorithm.



Algorithm 2 FindSegments(i)

Input: Number of points n.
Initialize memo array M of length n + 1 with M [0] = 0.
if i = 0 then

return Null
else

Find an j that minimizes ej,i + c + M [j − 1]
return the segment {pj , . . . , pi} and FindSegments(i− 1)

end if


