DS 320 Algorithms for Data Science Lecture #15
Spring 2025 Prof. Kira Goldner and Jeffrey Considine

Dynamic Programming I1I: Segmented Least Squares

The Problem

We are given a set of points {p1 = (z1,y2),p2 = (z2,92),...,Pn = (Tn,yn)} sorted by z-coordinate.
Our goal is to fit a (segmented) line to P with least squares error.

What is “error” here? We use square error (SSE) from any line we use. That is, if our line is
determined by slope a and y-intercept b, then our SSE would be

SSE = Z(yl —ax; — b)2.
i=1

Using calculus, we can derive that this is minimized when we set

nY iy — (O xi) (D2 Yi) d b— DoiYi—ay ;T
5 5 an = .
But what if we can use as many segments as we want, just with a penalty ¢ for each additional

segment? How should we decide on the number of segments, and on what the segments should look
like?

a =

Our goal is to partition P into some C' contiguous segments with minimal least squares error
when there is a penalty ¢ for each segment.

Making the Key Observation

The last point p, belongs to a single segment which must begin somewhere. Where does it begin?
In each case, what does the optimal solution look like?

Step 1: The Subproblem

Let opT(7) denote the optimum solution for the points p1,...,p;, and oPT(0) = 0. Let e;; denote
the minimum error of any line with respect to points pj,...,p; (i.e., find the line using the calculus
solution up above).



Step 2: The Recurrence

If the last segment of the optimal partition is pj, ..., p,, then: OPT(n) = €;, + ¢+ OPT(i — 1).

Hence
opT(i) = min {e;; + c+ oPT(j — 1)}.
1<5<i
where we use the segment pj,...,p; if and only if j € argmin of the above.

Step 3: Prove that your recurrence is correct. In the optimal solution on ¢ points, ¢ must
be in a segment that starts at the j € argmin of the above. OPT(j — 1) gives the optimal segmented
SSE for the first 7 — 1 points and e;; gives the optimal SSE for the segment from j to 4, so adding
these two error terms plus the penalty of ¢ for using the one additional segment from j to ¢ is the
valid cost of this solution. If 7 instead was in a different segment that started at a different 7/, then
for the same reasons, the cost of this solution would be opT(j' — 1) + ¢+ e;7;, but this term did
not minimize the above which is why it was not selected, hence it cannot have optimal (minimal)
error. Hence the above recurrence is correct.

Step 4: State and prove your base cases. 0OPT(0) = 0 is enough to get us off the ground.
Notice that opT(1) is then well-defined.

Step 5: State how to solve the original problem. This is once again OPT(n).

Step 6: The Algorithm

Algorithm 1 SegmentedLeastSquares(p, ..., pp)

Input: Set of n points p1,...p,.
Initialize memo array M of length n + 1 with M[0] = 0.
for all pairs j <i do

Compute e;; for the segment pj,...,p;
end for
fori=1,...,ndo

Mi] = miny<;j<i{eji +c+ M[j — 1]}
end for

return M [n]

Step 7: Running Time

The recurrence optimizes over n things, and we loop over n entries, so filling the memo takes O(n?)
time. Solving for e;; takes O(n) time and there are O(n?) pairs of (j, i), so this takes O(n?) time,
which is the dominant term for the algorithm.



Algorithm 2 FindSegments(i)

Input: Number of points n.
Initialize memo array M of length n + 1 with M[0] = 0.
if i =0 then
return Null
else
Find an j that minimizes e;; + ¢+ M[j — 1]
return the segment {p;,...,p;} and FindSegments(i — 1)
end if




